

GM4000QCI EQUATORIAL GERMAN MOUNT

Instruction and Maintenance User's Manual

REV. 4.0 - July, 2009

Firmware version 1.7

Fourth edition (July 2009).

This manual is protected by international copyright laws.

All rights are reserved. Total or partial reproduction of this manual is forbidden.

Copyright 2009 Comec costruzioni meccaniche snc – Italy.

Parts of this manual are translated from a manual in German language created by Helmut Heinicke, Nersingen.

Table of Contents

1	Foreword	8
1.1	Aim of this Manual	8
1.2	Ownership and Importance of this Manual	8
1.3	Updating of this Manual	8
2	Technical Data	9
3	Introduction	10
4	Mount Setup	11
4.1	Standard Configuration Items	11
4.2	Required Tools	
4.3	Packaging and Handling	12
4.3.1	Handling the Mount	13
4.4	Attaching the Mount to the Pier	13
4.5	Rough Altitude Adjustment	14
4.6	Insertion of cables	16
4.7	Mounting the Counterweights and the Telescope	17
4.7.1	Mounting the Counterweights	17
4.7.2	Mounting the Telescope	19
4.8	Balancing the Telescope	19
4.8.1	Balancing the R.A. Axis	19
4.8.2	Balancing the Declination Axis	
4.8.3	Orthogonality of the telescope	
4.9	Fine Altitude and Azimuth Adjustment	
5	The Control Unit	
5.1	The Connection Panel	
5.1.1	Serial RS-232 Connector	
5.1.2	GPS Connector	
5.1.3	Autoguider Input	
5.1.4	Ethernet – LAN Connector	
5.1.5	Remote Power Switch Connector	27
5.2	Electrical Setup	
5.2.1	Motors	
5.2.2	Homing Sensors	29
5.2.3	Hand Pad	

5.2.4	Power Supply	29
.3	The Hand Terminal QCI	30
5.3.1	Learning to Use the Hand Pad	30
5.3.2	The Direction Keys	31
5.3.3	The Numeric Keys	32
5.3.4	The STOP Key	33
.4	First Startup	33
5.4.1	Searching the Home Position and Resetting	33
5.4.2	Setting the Local Data	35
	If you are using the GPS module:	35
	To enter data manually:	35
.5	Alignment	36
5.5.1	Two-stars Calibration	37
5.5.2	Three-stars Calibration	37
5.5.3	Calibration refinement	38
5.5.4	Aligning the Polar Axis with the Polar Align function	38
5.5.5	Iterative Alignment	39
5.5.6	Correcting the Orthogonality Error	39
5.5.7	Saving the Current Calibration	40
5.5.8	Visualisation of the Alignment Information	40
5.5.9	Calibration Procedures	41
	Simple three-star alignment (not suitable for astrophotography use)	41
	Polar alignment using the mount model	41
	Polar iterate alignment	42
.6	Parking the Mount	43
.7	Switching off the Mount	44
	The Menu System	45
.1	The Object Menu	45
6.1.1	Deepsky	45
6.1.2	Star	46
6.1.3	Planet	47
6.1.4	Asteroid	47
6.1.5	Comet	47
6.1.6	Coordinates	48
6.1.7	User Defined	48
6.1.8	Alt/Az Coords	48
	.3 5.3.1 5.3.2 5.3.3 5.3.4 .4 5.4.1 5.4.2 .5 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.5.6 5.5.7 5.5.8 5.5.7 5.5.8 5.5.9 .6 .7 .1 6.1.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	3 The Hand Terminal QCI

6.1.9	Meridian Flip	
6.2	The Alignment Menu	49
6.2.1	Reset at Home	49
6.2.2	Polar Iterate	49
6.2.3	2-Stars	
6.2.4	Refine 2-Stars	
6.2.5	3-Stars	
6.2.6	Polar Align	49
6.2.7	Ortho Align	49
6.2.8	Align Info	
6.2.9	Home Search	
6.2.10	Home Save	
6.2.11	Park/Unpark	
6.2.12	Park Position	
6.3	The Drive Menu	
6.3.1	Tracking Speed	
6.3.2	Tracking Mode	51
6.3.3	Swap E – W	
6.3.4	Swap N – S	
6.3.5	Auto Swap N – S	
6.3.6	Autoguide speed	
6.4	Settings	
6.4.1	Date and Time	
6.4.2	Local Timezone	
6.4.3	DST (Daylight Saving Time)	
6.4.4	Site	
6.4.5	Get GPS Data	
6.4.6	Drive Settings	
6.4.7	Communication	
6.4.8	Network	
6.4.9	Boot Settings	55
6.4.10	Beep	
6.4.11	Asteroid Filter	55
6.4.12	Comet Filter	
6.4.13	Follow Obj	
6.4.14	Dome	

	6.4.15	Brightness	
	6.4.16	Contrast	
	6.4.17	Version	
	6.4.18	Language	
7		Additional Functions	59
	7.1	Countdown Timer	
	7.2	Stop Watch	59
8		Alignment Stars	60
	8.1	List of Reference Stars Sorted by Constellation	60
	8.2	List of Reference Stars Sorted by Name	61
	8.3	Alignment Star Charts	61
		Northern Hemisphere Chart – March to May	62
		Northern Hemisphere Chart – June to August	63
		Northern Hemisphere Chart – September to November	64
		Northern Hemisphere Chart – December to February	65
		Southern Hemisphere Chart – March to May	66
		Southern Hemisphere Chart – June to August	67
		Southern Hemisphere Chart – September to November	68
		Southern Hemisphere Chart – December to February	69
9		Remote Control	70
	9.1	Configuration	70
	9.1.1	RS-232 Serial Connection	70
	9.1.2	Ethernet – LAN	70
	9.2	Controlling the Mount with the Virtual Keypad	71
	9.2.1	Operation	71
	9.3	Controlling the Mount with Other Software	73
	9.3.1	Note for GUIDE 6.0 / 7.0 / 8.0	73
	9.3.2	Note for "The Sky"	73
	9.3.3	Note for "Perseus"	74
	9.3.4	Note for ASCOM compatible software (Maxim DL, ACP and others)	74
	9.4	Upgrading the Firmware	75
1(0	Troubleshooting	76
11	1	Maintenance	
12	2	Technical Support Centre	79
		For foreign countries:	79
13	3	Menu Structure	80

10Micron by COMEC technology - GM4000QCI Mount

13.1	Objects	80
13.2	Alignment	81
13.3	Drive	82
13.4	Settings	83
Appendix A	Base Adapter	87
Appendix B	Pier Adapter (optional)	88
Appendix C	Telescope Flange	89

1 Foreword

1.1 Aim of this Manual

In accordance with the provisions of the European Machinery Directive 89/392/EEC, as amended by 91/368/EEC and 93/44/EEC, and of Directive 89/833/ EEC, our company has developed this instruction and maintenance manual, in order to inform all users about the product, the correct methods of interaction with the machinery, in order to guarantee optimum safety conditions for people, animals and things, during its entire life cycle: transport, storage, installation, usage and maintenance.

1.2 Ownership and Importance of this Manual

This manual is an integral part of the machine. We therefore advise users to keep it in a safe place for the foreseeable duration of the product itself. It is the client's responsibility to transfer this manual to possible subsequent owners of the machine, or to any one else who will possess or make use of the machine.

1.3 Updating of this Manual

In the event of improvements and/or corrections being made to the machine, either by the manufacturer or by the client, subject to written authorisation by the manufacturer, it might be necessary to also update the documentation of the manual. Our company will evaluate this necessity, case by case, and will dispatch the modified parts of the manual. Our company will also indicate, by sending updates, all the sections of the manual to be disposed of, specifying the dates of validity of the modifications and the revision number of the manual's edition. The receiver is obliged to comply scrupulously with the provisions stipulated by the manufacturer in order to ensure that all copies of the manual, distributed within the company, are updated to the latest edition. It is strictly forbidden to make changes of any nature or any type whatsoever, to the contents, the graphic layout and the structure of the manual.

Furthermore, our company reserves the right to improve the product through modifications even though they may not be described in this edition of the manual.

Furthermore, our company also reserves the right to change or update this manual.

2 Technical Data

Weight	120kg without accessories
Maximum load	~ 150kg
Optimum useful load	~ 125kg
Latitude range	$23^{\circ} - 70^{\circ}$ adjustable with screw
Azimuth fine adjustment range	$+/-10^{\circ}$ adjustable with double screws
Counterweight shaft	60mm diameter stainless steel, weight 13kg
Counterweights (optional)	26kg each, plated steel, 30µm nickel coating

R.A. axis diameter	85mm
Declination axis diameter	80mm
Material	alloy steel
Note: the axis have holes of 60mm diameter to	allow the insertion of connecting cables.
Bearings	130mm diameter, multiple roller conical
R.A. worm wheel	330mm diameter, 430 teeth, bronze B14
Declination worm wheel	244mm diameter, 315 teeth, bronze B14
Worm	32mm diameter, tempered alloy steel
Transmission system	backlash-free system with belt and automatic
	backlash recovery

Distance between pier axis and declination axis about 125 mm – optionally 250 mm for long refractors

Motors Power supply Power consumption	2 axes A.C. servo brushless F.I.S. 24VDC ~ 1.5A while tracking
Internet in Free	\sim 5A at maximum speed
Control system	QCI
Guide speed	0.5x
Go-to speed	4°/s max. R.A., 5°/s max. declination
Pointing accuracy	<1' (mechanical average error)
Mean tracking precision	<30" with internal 25-stars software mapping +/- 3"/4" typical without PEC
wican nacking precision	-/- J /+ typical without I DC

3 Introduction

The GM4000QCI German equatorial mount has been designed for a professional utilisation, to meet the needs of the advanced observer who requires a mount with maximum strength and rigidity. It will satisfy the professional observer and photographer wanting to obtain very good results. The GM4000QCI is the perfect mount for big instruments in the observatory, carrying 300mm refractors, 400mm Newtonian reflectors, 500mm Cassegrains...

Born from the needs and experience of astronomers, inspired from the traditional German form, the GM4000QCI mount has been designed completely in Italy with innovative technologies, such as 3D-CAD models and CAM, and manufactured using modern CNC machine tools with high precision, carved out from aluminium bar-stock.

Other features comprise the QCI control system with sophisticated servo motors on both axes and industrial electronics, and a system of bored axes to put all cables inside the axes of the mount. The electronics and all the electric connections are integrated in a box mounted directly on the R.A. axis body that can be easily removed for maintenance.

All this is a warranty of success.

In order to maximise your pleasure on your first night of observation, we recommend that you familiarise yourself with the assembly and basic operation of the mount.

Look at the illustrations and read the manual.

Please take particular note of counterbalancing, operation of the keypad controller, a correct utilisation of your new mount and this caution:

DANGER

Never look at the Sun with a telescope or finderscope without installing a proper and secure solar filter. Looking at the Sun without a secure solar filter compromises the eye instantaneously and without remedy. Before looking at the Sun it is necessary to install securely a proper solar filter.

Don't use filters mounted at the eyepiece. Optics could be damaged by the excessive heat, and some filters can break!

Never use your telescope/mount system to project an image of the sun onto any surface; internal heat build-up can damage the telescope.

Particular attention is required when observing in daytime without filter (Venus, for example). Never look through the telescope or the finder when the mount is slewing. Never look at an object too near to the Sun.

Never leave unattended your telescope if it is able to point at the Sun.

Never leave the telescope system unsupervised, when unauthorised persons or children are present.

GOOD OBSERVATIONS TO YOU.

4 Mount Setup

4.1 Standard Configuration Items

Ordering a GM4000QCI in the standard configuration you receive the following items:

- 1. equatorial mount GM4000QCI (assembled) with attached control box;
- 2. base adapter;
- 3. azimuth adjustment block;
- 4. azimuth adjustment block screws (x2);
- 5. mount locking screws (x6) and washers (x6);
- 6. counterweight shaft;
- 7. hand pad;
- 8. power supply cable;
- 9. GPS to serial adapter cable;
- 10. remote switch cable;
- 11. CD-ROM with maintenance and instruction manual and software.

Fig. 4.1: Standard configuration items.

Depending on the packaging type, some items may come already assembled – in particular, the azimuth adjustment block and screws (3 and 4) can be already assembled with the base adapter (2); the base adapter (2) can be already assembled with the mount (1); the mount locking screws and washers (5) can be already assembled with the mount.

When you receive your new GM4000QCI mount, pay attention to check that no part has been damaged during shipment; damaged parts may not work correctly and may damage the system.

This equipment must be considered like a **precision instrument!**

4.2 Required Tools

In order to assembly your mount and make the necessary adjustments, you need the following tools:

combination spanners in the following sizes: 8mm - 13mm - 15mm - 17mm

hex (Allen) screwdrivers in the following sizes: 2.5mm - 3mm - 4mm - 5mm - 6mm - 8mm - 10mm

4.3 Packaging and Handling

The mount can be shipped to you in a case (Fig. 4.2) or on a pallet (Fig. 4.3).

Fig. 4.2: Mount shipped in a case.

Fig. 4.3: Mount shipped on a pallet.

If the mount came on a pallet, you will have to unscrew the retaining bolts under the pallet.

When shipping the mount again, use the original packages.

4.3.1 Handling the Mount

Whenever you need to move the mount around, use the points highlighted in Fig. 4.4 to attach the belts or chains of the transportation system. Use this procedure:

- 1. Before moving the mount, ensure that no counterweights or telescope are mounted.
- 2. Unhook both the worm gears following the procedure described in paragraph 4.8, steps 1 to 5.
- 3. Move the mount to its final position.
- 4. Engage again the worms following the procedure described in paragraph 4.8, steps 7 to 12.
- 5. Remove the belts.

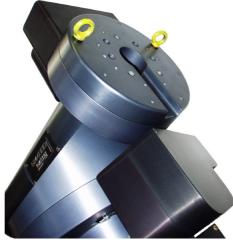
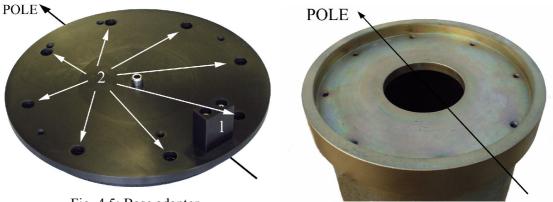


Fig. 4.4: Attach points.


WARNING

Moving the mount without unhooking the worm gears can result in damage to both the worms and the worm wheels. This would compromise the performance of the mount. Always remember to unhook the worm gears when you move the mount.

4.4 Attaching the Mount to the Pier

The GM4000QCI is mounted on a pier by means of the base adapter (Fig. 4.5). The pier's top must be machined as shown in Fig. 4.6 in order to provide a suitable housing for the base adapter, keeping the correct orientation. Please refer to the base adapter technical drawing in Appendix A.

If the base adapter (Fig. 4.1, n.2) is not already assembled with the azimuth block and screws (Fig. 4.1, n.3 and n.4) begin by assemblying them.

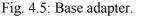


Fig. 4.6: Pier's top.

The protruding block (1) of the base adapter is used for azimuth alignment and should be oriented away from the celestial pole (i.e. towards south if you are in the northern hemisphere, and towards north if you are in the southern hemisphere). The base adapter has to be screwed to the pier using eight bolts (2).

Instead of machining the pier's top to accommodate the base adapter, you can use the optional pier adapter (Fig. 4.7). In this case, the flat top of the pier should accommodate the eight bolts used to fix the pier adapter to the pier; then you can mount the base adapter on the pier adapter.

Please refer to the pier adapter technical drawing in Appendix B.

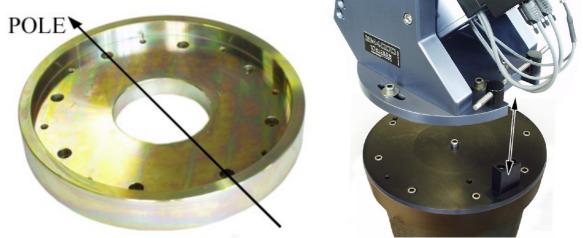


Fig. 4.7: Pier adapter (optional).

Fig. 4.8: Mount and base adapter alignment.

After locking the base adapter, put the mount on it paying attention to align the azimuth adjustment screws on the mount with the protruding block on the base adapter (Fig. 4.8). Then lock the six screws holding the mount to the base adapter.

4.5 Rough Altitude Adjustment

The altitude of the R.A. axis must match the latitude of your observing site. Refer to Fig. 4.9 for locating all the relevant parts of the mount.

We recommend that you do the rough altitude adjustment before mounting the counterweights and the telescope, since you will be making major adjustments to the position of the mount at this time. The telescope and the counterweights would add considerable weight and require more effort.

The support bar (1) must be locked in the appropriate position using the holes (2) according to the following table:

latitude	position
from 54° to 70°	1 st hole (top position)
from 42° to 54°	2 nd hole
from 32° to 42°	3 rd hole
from 23° to 32°	4 th hole (bottom position)

In the picture the support bar is located in the 2^{nd} hole.

The support bar is held in position by two screws; two smaller screws (orientation screws) located in the small holes (3) are used to put the altitude screw (4) orthogonal with the plane under the R.A. axis body.

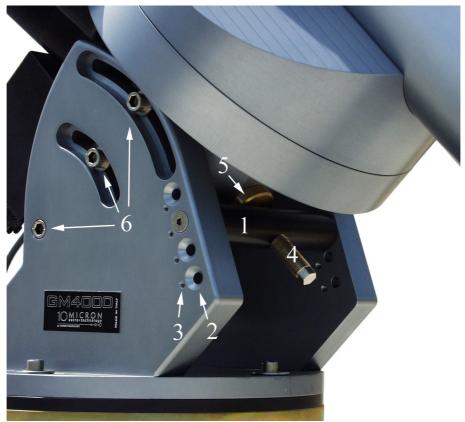


Fig. 4.9: Altitude adjustment system.

In order to change the position of the support bar the following procedure should be applied:

- 1. make sure that no instrument nor counterweights are mounted;
- 2. loosen about one turn the six altitude locking screws (6) supporting the R.A. axis body;
- 3. locate the R.A. axis body high enough to leave some space to put the support bar in the correct position and lock the six altitude locking screws;
- 4. loosen and remove the two screws holding the support bar and the two smaller orientation screws;

- 5. move the bar in the new position and insert the two bigger screws, without locking them;
- 6. insert the two smaller orientation screws paying attention to centre the hole in the support bar; when you arrive to the bottom, turn back one turn. These screws give automatically an orthogonal inclination to the altitude screw with the plane under the R.A. axis body;
- 7. put the brass disk (5) between the altitude screw and the R.A. axis body; turn the the altitude screw until the disk touches the R.A. axis body;
- 8. lock the two big screws holding the support bar;
- 9. lock the six altitude locking screws.

Later, you will do your final polar alignment with the telescope and counterweights.

4.6 Insertion of cables

The GM4000QCI mount bored axes have an inner diameter of 60mm, allowing insertion of additional cables as required by your application. The hole in the declination axis can be reached through a window under the "GM4000" plaque on the declination axis body (Fig. 4.10). It is better to insert all cables before mounting the telescope, because the telescope assembly is likely to block or impair the access to the declination axis hole.

Start from the hole in the R.A. axis, accessible from the bottom of the mount (Fig. 4.11); then, operating from the window in the declination axis body (Fig. 4.12), take the cable end and insert it into the hole in the declination axis, until it comes out of the telescope flange. The cables should rest in the groove in the telescope flange (Fig. 4.13).

Fig. 4.10: Accessing the declination axis hole.

Fig. 4.11: R.A. axis hole.

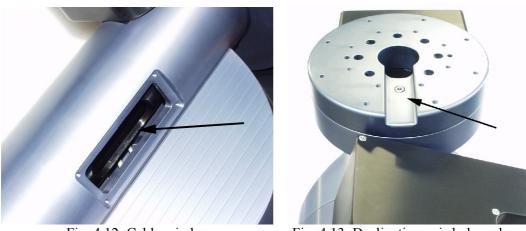


Fig. 4.12: Cable window.

Fig. 4.13: Declination axis hole and groove.

When the mount is shipped, the cables of the declination motor and of the declination homing sensor pass already through the hole in the R.A. axis.

4.7 Mounting the Counterweights and the Telescope

Before mounting the counterweights and the telescope, ensure that the mount is in the safety position shown in Fig. 4.14, with the declination axis oriented so that the counterweight shaft points downward.

Mounting the counterweights or the telescope when the declination axis is not in the safety position can cause sudden movement of an unbalanced load, possibly causing damage and injury.

Fig. 4.14: This is the right position to attach the counterweights and the telescope.

4.7.1 Mounting the Counterweights

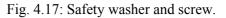

Optional counterweights (Fig. 4.15) can be ordered from 10micron. Check the website <u>www.10micron.com</u> or ask the reseller for availability.

Fig. 4.15: 26kg counterweight.

Fig. 4.16: Counterweight shaft thread and mouth.

Mounting the counterweight shaft is very easy. The thread have a mouth (Fig. 4.16) to allow centring. Screw the thread into the socket on the mount until it is locked in position. To insert the counterweights, remove the safety washer and screw (Fig. 4.17) from the end of the counterweight shaft. Insert an amount of counterweights at least equal to the weight of the telescope and accessories you are going to use. Lock firmly the blocking screw of each counterweight. Make sure to have counterweights in excess; this assures a good stability of the counterweights shaft when unhooking the worm gear. Remember to put back the safety washer and screw when you have finished.

Counterweights are heavy; you must pay attention during handling to avoid injury. Never forget that they can fall on your feet and hurt you!

Damage can result to the equipment also if the declination axis is moved from the safety position with counterweights mounted but without telescope mounted on the other side. After mounting the counterweights, proceed to mount the telescope before moving the mount.

4.7.2 Mounting the Telescope

The telescope mounting flange on the declination axis can accommodate a great variety of supporting systems.

If you utilise a dovetail plate, you can mount your telescope on a slide and then mount the slide on the dovetail plate.

For a big telescope with large and distant support rings, it is possible to make a plate to be locked directly to the declination's axis surface.

Refer to the technical drawing in Appendix C for all holes measure details.

4.8 Balancing the Telescope

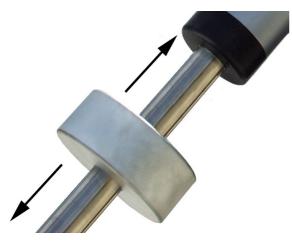
Balancing the telescope is important to ensure optimal operation of the mount. If the system is not correctly balanced, pointing accuracy may suffer and the motors can lock.

Follow the procedure closely to balance the GM4000QCI mount. Balance one axis at a time. Start with the R.A. axis and then proceed with the declination axis.

4.8.1 Balancing the R.A. Axis

Check the position of the counterweight shaft and counterweights: they must to be in the safety position of Fig. 4.14, with counterweights in excess. The safety position ensures that even if the telescope is not correctly balanced the mount is in an equilibrium position. This is important to avoid stress and damage to the gears; furthermore, if the worm gear is unhooked when the mount is not in equilibrium, the sudden movement can damage to the mount itself or cause injury.

Consider that you have a big weight to balance! It will be a good thing to make the balancing with one person operating on the mechanics and another person to move the axes.


 Remove the cover protecting the worm and the motor: loosen the three screws (1), (2), (3) holding the cover and remove them.

2. Loosen about five turns the central knob with your fingers.

3. Take a 13mm spanner and locate the screw with the hexagonal head on the right (1).

- 4. Push down with the hand the motor plate, keeping in balance the R.A. axis (see picture). Now the worm gear should be unhooked. Try to move by hand the R.A. axis with care continuing to push down the motor plate. Ensure that you are pressing the motor plate enough to unhook the worm gear. Now the R.A. axis should move. If this is not the case, either you have not loosened the knob of step 2 or you are not pressing enough the motor plate.
- 5. While continuing to push down the motor plate, turn right the hexagonal screw with the 13mm spanner until it touches the worm gear's housing. **Do not tighten the screw!** It must touch only. This operation ensure that the worm gear will be unhooked for all the time you need to balance the telescope. Now you can release the motor plate.

- 6. Loosen the counterweight blocking screw(s) and move with caution the counterweights along the counterweight shaft until the R.A. axis is balanced. The R.A. axis is balanced when you can move it easily with your hand and it remains in equilibrium in all positions. Remember to tighten again the blocking screw(s) when the scope is balanced.
- 7. When you have finished to balance the R.A. axis, push down the motor plate again and make all the operation in reverse order.
- 8. Loosen (turn left) the hexagonal screw with the 13mm spanner until the hexagonal head of the screw touches the case.
- 9. Release slowly the motor plate to engage the worm gear with the worm wheel moving **with care** the R.A. axis.
- 10. Check that the worm gear is engaged correctly.
- 11. Lock the central knob with your fingers.
- 12. Put back the motor's cover and the three screws holding it.

4.8.2 Balancing the Declination Axis

Now you must go on to balance the declination axis. The procedure is almost the same as for the R.A. axis, except for step 6, where you will have to move the telescope in its retaining rings, or use another balancing system, to balance the axis.

The mount can tolerate small error of balancing, but do not exceed to avoid damages.

4.8.3 Orthogonality of the telescope

Ideally, the telescope optical axis should be orthogonal to the declination axis. A telescope is not orthogonal if the optics are pointing to an angle other than exactly 90° to the declination axis. While our mount's axes are very accurately machined and very close to being perfectly orthogonal, the telescope optical axis can be significantly misaligned. This could be due to improperly machined rings, wedge in the cradle plate, optical axis not parallel to the mechanical axis of the tube assembly.

Whatever the reason, orthogonality can be easily checked and adjusted if needed. The software of the mount can measure the orthogonality error (also called "cone error") and help you to correct it.

You can attain a good polar alignment even with a residual orthogonality error; furthermore the orthogonality error is not a cause of drift or field rotation, so correcting it is not strictly necessary.

4.9 Fine Altitude and Azimuth Adjustment

The fine altitude and azimuth adjustment procedure must be performed with the help of the mount software in order to obtain a good polar alignment. The software provides various polar alignment routines that will assist you in this step; these are described in paragraph 5.5.

To make the fine altitude and azimuth adjustment you must locate the altitude screw (Fig. 4.18, n.1) and the azimuth screws (Fig. 4.19, n.1) on the mount.

The procedure to make the mechanical adjustments is the following:

- 1. Loosen the six altitude locking screws (Fig. 4.9, n.6) about a half turn.
- 2. Loosen about a half turn the six screws holding the mount to the pier (Fig. 4.18, n.2 and Fig. 4.19, n.2).
- 3. Adjust the altitude moving the R.A. body up or down with the altitude screw.
- 4. Adjust the azimuth moving the mount left or right using the two azimuth screws; you must back off the opposing azimuth screw in order to move the other screw in that direction.
- 5. When you have reached the final position, lock the six altitude locking screws and lock firmly the pier screws.

Fig. 4.18: Altitude adjusting screw.

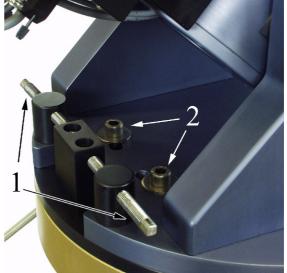


Fig. 4.19: Azimuth adjusting screws.

5 The Control Unit

Fig. 5.1: The control box.

All electronics and electric connections are integrated in a box mounted directly on the R.A. body (Fig. 5.1). The control box is fully removable for maintenance.

The control system includes also:

- an ergonomic hand pad with 2m spiral cable and a 12-pin circular connector with security lock ring;
- a red-black cable for power supply with a 2-pin circular connector with security ring;
- two cables for connecting the motors to the control box: the declination motor cable coming out from the R.A. axis hole and the R.A. motor cable coming directly from the R.A. motor box;
- two cables connecting the homing sensors: the declination sensor cable coming out from the R.A. axis hole and the R.A. sensor cable coming directly from the R.A. motor box; the cables join in a single connector.

All connections should be made before connecting the power supply of the mount, to avoid the risk of damaging the electronics. The LAN connection makes exception to this and can be plugged in or out while the mount is switched on.

Also don't undervalue the risk of electric shocks, even if the system is operated at 24VDC. Keep the control box clear of dew and water.

5.1 The Connection Panel

All the electronic connections are accessible from the connection panel on the control box.

Fig. 5.2: The connection panel on the control box.

- 1. Power LED (red)
- 2. Main protection fuse (5A)
- 3. Connection for external on/off switching with relay box, 2.5mm stereo jack
- 4. Power switch
- 5. Power supply connector (24VDC, 6A)
- 6. Circular 12 pin hand pad connector
- 7. Circular 6 pin external homing sensor connector
- 8. RS-232 serial, DB-9 connector for remote PC control
- 9. Ethernet-LAN RJ-45 connector for remote PC control
- 10. R.A. motor connector
- 11. Dec. motor connector
- 12. Autoguide connector, 6-pin RJ12 (6/6)
- 13. Connector for GPS module (optional), or secondary RS-232 for remote PC control, 4-pin RJ11 (4/4)

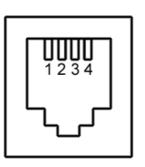
5.1.1 Serial RS-232 Connector

The serial RS-232 connector (Fig. 5.2, n. 8) can be used to control remotely the GM4000QCI mount from a PC, using software such as "Guide", "The Sky", "Cartes du Ciel", "Perseus" etc.

Use a pin-to-pin cable with one male and one female connector; only pins 2, 3 and 5 are used. Don't use a null-modem cable.

Fig. 5.3: RS-232 port pinout.

5.1.2 **GPS** Connector


Fig. 5.4: The optional GPS module.

The GPS socket (Fig. 5.2, n. 13) can be used with the optional GPS module (Fig. 5.4) to retrieve the coordinates of the observation site and the exact universal time.

If no GPS module is connected, the GPS socket can be used with the supplied adapter (Fig. 5.5) as an auxiliary RS-232 serial port, with the same functions as the main RS-232 serial port.

The port is a 4-pin RJ11 (4/4) with the pinout shown in Fig. 5.6.

Receive data (RX) +5V supply 3 Ground 4

Transmit data (TX)

Fig. 5.5: GPS to RS-232 adapter.

Fig. 5.6: GPS port pinout.

1

2

5.1.3 **Autoguider Input**

This port (Fig. 5.2, n. 12) is a RJ12 (6/6) port (sometimes also marked RJ11-6 or 6p6c) where you can connect a CCD camera or another system for automatic guiding (autoguide). The autoguide input follows the SBIG ST-4 protocol. The correction speed is by default 0.5x the sidereal speed, and can be adjusted to lower speeds (see paragraph 6.3.6). The autoguider input is always active and corrections may be operated on both axes at the same time. The corrections of the autoguide are independent of the direction keys on the hand pad; e.g. you can use the direction keys to test the autoguider system.

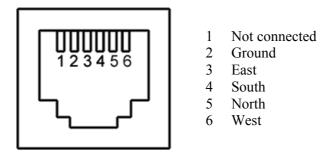


Fig. 5.7: Autoguider port pinout.

The pinout is shown in Fig. 5.7. To move the mount in one of the four directions, the corresponding pin has to be put in contact with the ground pin. The magnitude of the correction is proportional to the duration of the contact.

You can also autoguide through the RS-232 serial port using the LX200 protocol.

5.1.4 Ethernet – LAN Connector

This port (Fig. 5.2, n. 9) is a 10/100Mbit LAN interface. The mount can be controlled over the network with this port in all its functions. Use a CAT.5 cable to connect to your network, like for a normal Ethernet device. See chapter 9 for details about the remote control.

5.1.5 Remote Power Switch Connector

Fig. 5.8: Remote switch jack plug and cable.

The GM4000QCI can be connected to an external relay box in order to switch on and off the system remotely, using the provided 2.5mm stereo jack connector (3-poles) of Fig. 5.2, n. 3. A suitable jack plug and cable is provided (Fig. 5.8). Only the central contacts are used. They have to be shorted by the relay box like a push-button: to switch on the mount, the contact must be closed for at least one second, and then opened. To switch off the mount correctly, you should use another pulse of the same duration. Then wait at least 30 seconds before shutting down the power supply.

The jack should be inserted with no power supply connected to the mount.

5.2 Electrical Setup

To operate the GM4000QCI mount, some electrical connections are needed. Fig. 5.9 shows the connections that are already made when the mount is shipped (i.e., the motors and the homing sensors). Ensure that they are correct. In addition, you need to connect the hand pad. All other connections are used for additional functionality (such as remote control and GPS). Make all connections before attaching the power supply.

Fig. 5.9: Electrical connections setup.

5.2.1 Motors

The R.A. motor cable and the declination motor cable must be connected to the control box with two 15-pin DB male connectors.

To avoid bad connections it is important to lock the two long threaded screws of each connectors.

The two motor cables have the same 15-pin connectors; pay attention to connect the R.A. motor cable to the plug labelled "R.A. MOTOR" and the declination motor cable to the plug labelled "DEC. MOTOR". You can differentiate the cables since the R.A. motor cable comes directly from the R.A. motor box, while the declination motor cable comes out from the hole in the R.A. axis.

Fig. 5.10: Motor connectors.

Fig. 5.11: Motor cables.

WARNING

Do not connect or disconnect the motor cables while the electronics is switched on. Otherwise the electronics and the motors may be damaged.

5.2.2 Homing Sensors

The homing sensors cables join at the connector; they should be connected to the plug labelled "EXT. SENSORS".

5.2.3 Hand Pad

The hand pad "HAND TERMINAL QCI" must be connected to the control box with its 12 pin circular connector; to avoid bad connections it is important to lock the threaded ring of the connector.

Fig. 5.12: The hand pad.

Fig. 5.13: Hand pad cable connection.

5.2.4 **Power Supply**

The GM4000QCI mount requires a 24V DC, 6A regulated power supply. Use the supplied red and black cable to connect the power supply to the 2-pin round plug labelled "POWER SUPPLY" on the control box. The threaded ring of the connector should be firmly locked.

The red wire must be connected to the positive (+) pole of the power supply, the black wire must be connected to the negative (-) pole.

The protection fuse can be replaced only with another 5A slow-burning fuse. Spare fuses are available from ordinary electronic shops. If the power supply is reverse connected the protection fuse may blow, but the electronics will be safe.

The current required by the GM4000QCI system varies between 1.5A and 5A depending on the motor speed and on the supply voltage. The operating voltage may vary from 24V to 26V. Please don't use unregulated power supplies because the output voltage of these units is not good enough to operate the mount.

When using a voltage of less than 24V the motors can stop; normal operation is not guaranteed. If you want optimal performance, you must use a 24V power supply. Suitable power supplies are available as optional.

5.3 The Hand Terminal QCI

The hand pad "HAND TERMINAL QCI" (Fig. 5.14) is a communication interface between the mount and the operator, enabling the control of all the functions of the mount. The hand pad features large control keys that can be easily found and thick pressed with gloves and а well-readable 2x16 alphanumeric LCD display that can operate in a wide range of temperature (-20 $^{\circ}$ to +80 $^{\circ}$), remaining readable in daylight as well as at night.

If you are using the keypad in the daylight, you may need to shade the screen from the direct sunlight with your hand in order to see it more clearly.

Brightness and contrast can be adjusted as required.

With a few keystrokes, you can slew to objects by their common name or catalogue number, set a countdown timer for a photographic exposure, set the tracking speeds, enter R.A. and Dec. coordinates to find the newest object, adjust the brightness of the display, set parameters and much more.

5.3.1 Learning to Use the Hand Pad

The first time you switch on the mount you will make some setup procedures in order to ensure correct operation. You will control the mount using the hand pad, so it is useful to make yourself comfortable with its mode of operation.

After switching on the mount, the hand pad display will show for a brief moment a screen like this:

followed by:

10MICRON - Comec booting...

After about a minute, when the mount electronics has completed the initialization, the display will show the current date and time:

21:05:48 DST 2007 May 14

By pressing the 3 = DISP key, the display will cycle between various data views and utility functions. They are the following:

R.A./Dec. coordinates	The equatorial coordinates where the telescope is looking	
Az./Alt. coordinates	The altazimuth coordinates where the telescope is looking	
Object data	The data of the current object; pressing 2-INFO will cycle between showing the name, type and magnitude of the object; its equatorial coordinates; its altazimuth coordinates.	
Countdown timer	A countdown timer (see paragraph 7.1)	
Chronometer	A stopwatch timer (see paragraph 7.2)	
UTC clock	The current universal time	
Sidereal time and JD	The current sidereal time and Julian date	
Local time clock	The current local time	

Pressing the *MENU* key, you will enter the menu system and the display will show

>Objects Alignment

You can scroll the menu using the keys marked with the up/down arrows and +/-. Four main submenus are available; they are **Objects**, **Alignment**, **Drive** and **Settings**. You can enter into a submenu by pressing *ENTER*. To exit from a submenu and return to the previous menu press *ESC*. Pressing *MENU* will make you return to the main data display. For a complete reference of the menu system read the following chapters.

5.3.2 The Direction Keys

Use direction keys, labelled N, E, S, W, to move manually the telescope. Press one of these keys to accelerate the mount up to the selected speed, release it to decelerate until it stops. The N key makes the mount accelerate towards higher declinations, the S key towards lower declinations, the E and W keys towards east and west along the R.A. coordinates. In addition, you can press two keys simultaneously for diagonal movement.

The direction an object will move in the eyepiece depends also on the optical configuration of the telescope; the action of the keys can be exchanged in both axes to obtain a more comfortable control (see paragraph 6.3.3 and 6.3.4).

The speed can be selected with the keys +/- (when outside of the menu system), and the selected speed is shown in the display for some seconds. The following speeds are available:

Angular speed	Rate to sidereal speed	Notes
2.25"/sec.	0.15x	
3.75"/sec.	0.25x	
7.5"/sec.	0.5x	
15"/sec.	1x	sidereal speed
1'/sec.	4x	
4'/sec.	16x	
15'/sec.	60x	
1°/sec.	240x	
from $2^{\circ}/\text{sec.}$ to $5^{\circ}/\text{sec.}$	from 480x to 1200x	slew rate, adjustable; R.A. axis up to 4°/sec. (960x)

The default speed at startup is the maximum speed (slew rate).

Note that if you are controlling the mount from a PC using the LX200 command protocol, the motion speed will be selected from the PC among the following:

Angular speed	Rate to sidereal speed	Notes
7.5"/sec.	0.5x	guide rate
6'/sec.	24x	centre rate
1°/sec.	240x	find rate
from $2^{\circ}/\text{sec.}$ to $5^{\circ}/\text{sec.}$	from 480x to 1200x	slew rate, adjustable; R.A. axis up to 4°/sec. (960x)

The *EAST* and *WEST* keys can also be used to move the cursor when entering data.

5.3.3 The Numeric Keys

Beside being used to input numeric data, the numeric keys have a secondary function that is shown in small characters under the number. See the following table:

Key	Function
7 M	Select a Messier object.
8 NGC	Select a NGC object.
9 IC	Select a IC object.
4 STAR	Go to star selection menu.
5 PLANET	Go to planet selection menu.
6 MORE	Go to a menu with other selections: asteroids, comets, user defined objects, altazimuth

Key	Function
	coordinates and meridian flip.
1 COORD	Select R.A./Dec. coordinates of the object to slew to.
2 INFO	Show additional data of the current object.
3 DISP	Cycle the display between: R.A./Dec. coordinates; Az./Alt. coordinates; object data; countdown timer; chronometer; UTC clock; sidereal time and JD; local time clock.
0 LIGHT	Switch the keypad backlight on and off.

5.3.4 The STOP Key

When you press the *STOP* key, the mount will halt its current movement. If it is not parked it will also resume tracking(see paragraph 5.6).

5.4 First Startup

This startup sequence will help you through the steps required to begin observing with the mount. You will learn to set your location and time, and perform the calibration/polar alignment. An internal clock will maintain the time, while the calibration should be repeated only when the mount is moved, or when the optical tube has lost the orthogonality with the declination axis. If none of these events has happened, you can switch off the system and at the next startup it will be ready for observation. The mount will keep track of the current position also if power is lost while operating the mount; no parking or homing is required.

When performing firmware upgrades, it is not guaranteed that the position of the mount will be retained in memory. Check the documentation provided with the upgrade for details.

5.4.1 Searching the Home Position and Resetting

The first time you use the mount, it will not know how it is oriented. If the mount is moved without looking for the home position, it can hit the mechanical stops. So the first thing to do is to bring the mount to the home position. Press the *MENU* key and scroll down to the **Alignment** menu. Press *ENTER*. Scroll down until you find the **Home Search** function and press *ENTER*. The display will show

Confirm Home Search?

Press ENTER again. The display will show

```
Home search in progress...
```

and the mount will begin to slew to the home position, swivelling back and forth at lower and lower speeds in both axes until the home position is found.

Fig. 5.15: The home position.

At the end the telescope should point as in Fig. 5.15 and the display will show for about four seconds:

Home search completed.

Now scroll up in the menu and select the **Reset at Home** function. The display will show

Confirm Reset at Home?

Press ENTER again, then press MENU to exit from the menu.

Now you can safely move the mount around without risking to hit the mechanical stops.

This procedure should be **always** made in the following cases:

- after you have setup the mount in a new place;
- after balancing the mount using the procedure described in paragraph 4.8;
- if you have disengaged the worm from the worm wheel or some other transmission gear/belt;
- after replacing one or both motors;
- after the mount has been serviced by the manufacturer;
- after a firmware upgrade that does not preserve the saved position (see the documentation provided with the firmware upgrade).

WARNING

Failing to repeat this procedure in the cases stated above can result in the mount moving in unpredictable ways, hitting the mechanical stops or causing the instrumentation to hit the base of the mount itself, possibly causing damage to the instrumentation.

5.4.2 Setting the Local Data

To find objects, the mount must know the current location, date and time. You can enter the data manually or use the optional GPS module to collect them.

If you are using the GPS module:

- make sure that the GPS module is connected;
- select MENU Settings Get GPS data;
- The display will show:

Lat Lon Time Elev - 00 Sats

until the position and time data have been acquired. **Sats** shows the number of satellites that are currently tracked. The acquisition may take up to two minutes; when completed, the display will show

GPS data acquired

If the GPS data have not been acquired in five minutes, the procedure will abort. This can happen if the GPS module is located in a position where it doesn't have a good view of the sky. In this case relocate the GPS module and repeat the procedure.

- Now select **Local Timezone** (also in the **Settings** menu), enter the difference between your local time and UTC (positive east), in hours and minutes, and press *ENTER*;
- now go to **DST** (also in the **Settings** menu); press ENTER to toggle the Daylight Saving Time **ON** and **OFF**.

Now you can go to paragraph 5.5.

To enter data manually:

The first thing to do is entering your geographical location. You can choose a city from the location database or enter manually all data. To choose a location:

- select MENU Settings Site Select;
- choose your country with the + and keys and press *ENTER*;
- choose a city near you (if available) and press ENTER.

To enter location data manually:

- select *MENU* - Settings - Site - Enter;

- insert your longitude (positive west) and latitude (positive north), in degrees, minutes, and seconds. You can use the E-W direction keys to move between the different input fields; when you have finished press *ENTER*;
- insert your elevation above sea level in meters and your time zone (difference between your local time and UTC, positive east, in hours and minutes) and press *ENTER*.
- The mount will retain the coordinates indefinitely. You can review the current settings selecting *MENU* Settings Site Current. At this point you can also save the coordinates in the database; go to *MENU* Settings
 Site Save and insert a name using the *N*-*E*-*S*-*W* keys. The newly defined location will be accessed in *MENU* Settings Site Select User defined.

Note that extreme accuracy of the observer's coordinates is not required, since they are used only to perform the correction for the refraction, to check the motion limits and to know the position of the telescope at the home position before alignment. A few arcminutes of accuracy is enough, so you can use a map to discover your latitude and longitude without any problem. As for elevation, it should be accurate to about 100 metres to compute refraction accurately.

Now you have to enter the local time. Go to **MENU – Settings – DST**; press ENTER to toggle the Daylight Saving Time **ON** and **OFF** until the settings corresponds to your current clock. Then go to **MENU – Settings – Date and Time** and enter your time and date as you can read it from an accurate clock. You can use the E-W direction keys to move between the different input fields, and the arrow keys to choose the month. When you have finished, press **ENTER**.

Like all quartz clocks, the internal clock of the mount can drift slowly with time, especially if the mount is exposed to unusually low or high temperatures. Each second of error in the clock will worsen the pointing accuracy by 15 arcseconds. The clock should be kept accurately adjusted to maintain the pointing accuracy. This can be done manually, with the PC connection or with the GPS module. When adjusting the clock, it is not required to make a new alignment.

5.5 Alignment

Now the mount needs to be calibrated and the polar axis aligned with the celestial pole. A proper calibrated mount will point routinely with a precision of about 1'.

If properly calibrated, the internal mount model will keep account of the polar misalignment and of the orthogonality error when pointing objects, but a significant polar error will make tracking inaccurate, since tracking is always done at sidereal speed with the R.A. axis only. While this can be acceptable for visual observing, if you plan to use the mount for astrophotography or other scientific data collection, the polar axis should be properly aligned.

It is better to do the alignment/calibration procedures using a high magnification reticle eyepiece; do not use a diagonal to centre the stars, unless it has been properly calibrated in order to avoid the orthogonality error.

Generally, the best way to obtain a good polar alignment is to make a three-stars calibration, or a two-stars calibration followed by a refinement; then to use the **Polar Align** function to align the R.A. axis; then repeat the three-stars calibration (or two-stars calibration followed by the refinement). You can check the estimated polar alignment error by using the **Align Info** function: usually after an alignment obtained in this way the error will be no worse than about 1'. Adding further calibration stars with the **Refine 2-stars** function improves the accuracy.

Do not use the **Polar Iterate** command as your default choice for aligning the polar axis if you do not have a compelling reason to do so, since you will obtain worse results in a longer time almost in any situation.

The following paragraphs details the steps that will be used in the different calibration procedures; for the complete calibration procedures and for choosing among them depending on your situation see paragraph 5.5.9.

5.5.1 Two-stars Calibration

The two-stars calibration procedure measures the polar axis misalignment in order to achieve a good pointing accuracy even if the mount is misaligned. Proceed as follows:

- Select *MENU* Alignment 2-stars. Choose one star among the ones provided and press *ENTER*, then choose another star and press *ENTER*. If the choice is too limited, i.e. you cannot find a suitable pair of stars visible from your site, return to the first star selection by pressing *ESC* or use the three-stars calibration procedure.
- 2. Press *ENTER* to confirm the slew to the first star. After the slew, centre the star with the maximum precision using the keypad and press *ENTER*.
- 3. Press *ENTER* to confirm the slew to the second star. After the slew, centre the star with the maximum precision using the keypad and press *ENTER*.
- 4. Now the message "Alignment complete" will appear. The mount is now aligned.

Note that this procedure does not correct the orthogonality error of the telescope. If you are not sure that your telescope's optical axis is perfectly orthogonal to the declination axis, do a three-stars calibration or a refinement.

5.5.2 Three-stars Calibration

The three-stars calibration procedure measures the orthogonality error of the telescope's optical axis in addition to the polar axis misalignment, and uses it to improve the pointing accuracy. Furthermore, you can choose among more stars than using two-stars alignment, since the selection is less critical. On the other

hand, you can choose stars in the same zone of sky, thus hampering the final accuracy.

- 1. Select *MENU* Alignment 3-stars.
- 2. Choose one star from the list and press ENTER.
- 3. Press *ENTER* to confirm the slew to the star. After the slew, centre the star with the maximum precision using the keypad and press *ENTER*.
- 4. Repeat the steps 2. and 3. for two other stars.
- 5. Now the message "Alignment complete" will appear. The mount is now aligned.

Even after the three-stars calibration, you can improve the mount model by adding more stars.

5.5.3 Calibration refinement

This procedure adds more star to an existing mount model, after a two-stars or three-stars calibration.

- 1. Select *MENU*-Alignment-Refine 2-stars.
- 2. Select a star among the list.
- 3. Press *ENTER* to confirm the slew to the star. After the slew, centre the star with the maximum precision using the keypad and press *ENTER*.
- 4. Now the message "Alignment refined" will appear.

You can repeat this procedure up to 25 total calibration stars.

Note that if you do a two-stars calibration followed by a refinement, the result will be the same as if you had done a three-stars calibration. Keep also in mind that one of the major inaccuracies is usually the orthogonality error; in order to correct for this error, a three-stars calibration (or a two-stars calibration followed by at least one refinement) is required.

5.5.4 Aligning the Polar Axis with the Polar Align function

This procedure uses the data computed in the calibration step to align the polar axis. If done after at least a three-stars calibration, or a two-stars calibration followed by at least one refinement, it is insensitive to orthogonality error; moreover it can be done without using Polaris, so it is very useful if you can't see Polaris from your point of view.

The first thing to do is a two-stars calibration (paragraph 5.5.1) or a three-stars calibration (paragraph 5.5.2).

After the calibration, the mount will know the polar axis misalignment. Now do the following:

- 1. Select *MENU* Alignment Polar align and select a star from the list.
- 2. The system will ask to slew to the star. Press *ENTER* to confirm.

3. The scope will slew to the star and miss it. Now move the polar axis of the mount with the altitude and azimuth movements as explained in paragraph 4.9 until the star is accurately centred in the field of view and press *ENTER*.

The polar axis now is correctly aligned, and the mount will point correctly.

However, it is advisable to make a new three-stars calibration in order to improve the pointing accuracy.

In order to obtain optimal performance, it is not required to correct physically the orthogonality error; if you wish to do so, however, the mount will help you with the procedure described in the following paragraph.

5.5.5 Iterative Alignment

This procedure uses a star (chosen among a small list) and Polaris to align the polar axis.

The accuracy of the alignment will depend of the orthogonality error of the optical axis: the larger the orthogonality error, the worse the polar axis will be aligned.

- If you have not done it before, select *MENU* Alignment Home Search and press *ENTER*. Wait for the homing to complete. Then select *MENU* - Alignment - Reset at Home. Now the system will point correctly, but with a very large error.
- 2. Select MENU Alignment Polar Iterate.
- 3. The system will provide a small list of suitable stars. Choose the star you prefer and press *ENTER*.
- 4. Now the system will ask to slew to the star. Press *ENTER* to confirm the slew.
- 5. Centre the star with the keypad and press *ENTER*.
- 6. Now the system will ask to slew to Polaris. Press *ENTER* to confirm the slew.
- 7. Centre Polaris moving the polar axis with the altitude and azimuth movements as described in paragraph 4.9 and press *ENTER*.
- 8. Repeat the procedure from step 4 until both stars are centred with a good precision, i.e. you can slew between the two without significant errors.
- 9. Press *ESC* to terminate the procedure.

5.5.6 Correcting the Orthogonality Error

This procedure uses the data computed in the calibration step to correct physically the orthogonality error. It must be done after at least a three-stars calibration, or a two-stars calibration followed by at least one refinement. It is not necessary to correct physically the orthogonality error in order to obtain a good pointing accuracy or tracking.

- 4. Select *MENU* Alignment Ortho align and select a star from the list.
- 5. The system will ask to slew to the star. Press *ENTER* to confirm.

6. The scope will slew to the star and miss it. Now adjust the orthogonality of the telescope, for example by inserting shims, until the star in centred in the field of view and press *ENTER*.

The telescope is now orthogonal to the declination axis. It is advisable to make a new three-stars calibration in order to improve the pointing accuracy.

5.5.7 Saving the Current Calibration

If the worm wheel is disengaged or the motors replaced, the calibration will be lost and the system will not know the real position of the telescope. The calibration, then, should be repeated.

The homing function of the GM4000QCI is useful to recover the position and alignment of the mount even if a major mechanical or electronic repair has been made. The only thing required is that the on-board memory has not been replaced.

After a good calibration, select **MENU** – **Alignment** – **Home Save**. This will slew the mount to the home position and will save the current alignment. Now, even if you lose the alignment, you will recover it using **MENU** – **Alignment** – **Home Search**.

Since the GM4000QCI is able to maintain in memory the position and the current alignment of the mount in every case, even if the power is abruptly interrupted, it is *NOT* required to use the **Home Search** function when the mount is operated, switched on or off normally.

5.5.8 Visualisation of the Alignment Information

You can show the alignment information using **MENU** – **Alignment** – **Align info**. A short text will appear: scroll it with + and –. This text will tell you some useful information:

- 1. The type of alignment used: no complex alignment, 2-stars, 3 or more stars if you have used additional stars.
- 2. If 2 or more stars have been used, an estimation of the polar axis position error and its position angle relative to the celestial pole measured from the zenith towards the left, plus information about how to correct the error operating directly on the azimuth and altitude screws. An example of the display:

```
Alt 48°24'44"
Az 00°01'35"
Polar align error
00° 01' 20"
PA 232° 16'
To centre pol ax
move .04 Lf 0.2 Up
```

These values are examples of a very good alignment, requiring no further correction. The first two values show the position of the polar axis in altazimuth coordinates: **Alt** is the altitude above the horizon, ideally equal to your geographical latitude without sign; **Az** is the azimuth measured from north towards east, ideally equal to zero in the northern emisphere and

180° in the southern emisphere. The third angle, marked **Polar align error**, is the angular deviation of the polar axis from the celestial pole; the fourth angle, marked **PA**, is the position angle of the polar axis with respect from the celestial pole, where 0° is the line joining the celestial pole and the zenith, and the angle is measured counterclockwise; so 0° means that the polar axis is higher than the celestial pole, 90° that it is on the left, and so on. The required adjustment is shown as ".04 Lf 0.2 Up" meaning that the mount should be moved to the left by 0.04 revolutions of the azimuth adjustment screw and up by 0.2 revolutions of the altitude adjustment screw. Usually it is better to accomplish the adjustment with the polar alignment procedure described in paragraph 5.5.4.

3. If 3 or more stars have been used, an estimation of the orthogonality error is shown as

```
Scope ortho. err
+00°12'50″
```

meaning that the angle between the telescope optical axis and the declination axis deviates from 90° by 12'50". Also in this case, it is better to accomplish the adjustment with the orthogonality correction procedure (paragraph 5.5.6).

4. The last item is a list of the stars used for alignment. This can be useful as a reference.

5.5.9 Calibration Procedures

By combining the procedures described above, you can calibrate the mount in a number of different ways. Each way has its advantages and disadvantages.

Simple three-star alignment (not suitable for astrophotography use)

This procedure allows the mount to point correctly without aligning the polar axis. Since the tracking is done in the R.A. axis only, the polar axis misalignment will cause rather large tracking errors and field rotation, making this procedure suitable only for casual visual observation.

Procedure:

1. Do a three-stars alignment calibration (paragraph 5.5.2).

Otherwise:

- 1. Do a two-stars alignment calibration (paragraph 5.5.1).
- 2. Add another star with the **Refine 2-stars** command (paragraph 5.5.3).

Polar alignment using the mount model

This procedure will align correctly the polar axis even in presence of orthogonality error. This ensures the best pointing accuracy, accurate tracking and no field rotation. Use this procedure for astrophotography or other scientific work.

Procedure:

- 1. Do a three-stars alignment calibration (paragraph 5.5.2)
- 2. Optionally, add one or more stars with the refine align command (paragraph 5.5.3), to be repeated at will.

- 3. Execute the **Polar align** command (paragraph 5.5.4)
- 4. If you want to correct the orthogonality error, execute the **Ortho align** command (paragraph 5.5.6). Note that even if you skip this step, the mount will point and track correctly.
- 5. Do again a three-stars alignment calibration (paragraph 5.5.2)
- 6. Optionally, add one or more stars with the **Refine 2-stars** command (paragraph 5.5.3), to be repeated at will.

In the above procedure, the three-stars alignment calibrations can be replaced with two-stars alignment calibrations (paragraph 5.5.1) followed by at least one refine align command (paragraph 5.5.3).

Polar iterate alignment

With this procedure the polar axis is aligned to the celestial pole if there is no orthogonality error. An orthogonality error will worsen both the polar alignment and the pointing accuracy. This procedure requires only Polaris (or sigma Octantis in the southern hemisphere) and another star. Use this procedure only when you know that there is no orthogonality error; in this case, the resulting alignment is accurate enough for most uses.

Procedure:

- 1. Align the polar axis with the **Polar Iterate** command (paragraph 5.5.5).
- 2. Do a three-stars alignment calibration (paragraph 5.5.2).
- 3. Optionally, add one or more stars with the **Refine 2-stars** command (paragraph 5.5.3), to be repeated at will.

Otherwise:

- 1. Align the polar axis with the **Polar Iterate** command (paragraph 5.5.5)
- 2. Do a two-stars alignment calibration (paragraph 5.5.1).
- 3. Add at least one or more stars with the **Refine 2-stars** command (paragraph 5.5.3), to be repeated at will.

In the above procedures you can always choose between doing a three-stars alignment and doing a two-stars alignment followed by a refinement with an additional star. In the first case you will have a greater choice of stars, so use the three-stars alignment when you have a limited field of view. In the second case the system will restict the choice to stars placed in the best geometric conditions; this ensures a better accuracy.

If the polar axis is not aligned correctly, after a calibration the mount will point accurately, but tracking will be wrong. You will see the objects drifting in the field of view of the telescope, and also the equatorial coordinates on the hand pad will change while tracking. This is not an error, but it is a symptom that the mount is misaligned.

5.6 Parking the Mount

When the mount is parked, tracking is stopped and movement is not allowed. The control system, though, remains active. This allows you to "pause" the telescope during an observation session, without compromising its calibration and avoiding the need to restart the system.

The mount can be parked at the end of an observing session, to put the telescope in a predefined position i.e. to close a roof, or to have an easy access to instruments.

Fig. 5.16: Default park position

If the mount is switched off when parked, it will remain parked when it is switched on again, except if the "**Alw. Unpark**" function in *MENU* – **Settings** – **Boot Settings** is activated (paragraph 6.4.9). Parking before shutting down the mount will ensure that, when powered on again, it will not move until it receives the appropriate commands.

To park the mount, select **MENU** – **Alignment** – **Park** and press **ENTER** to confirm.

To unpark the mount, select **MENU** – **Alignment** – **Unpark** and press **ENTER** to confirm.

When the mount is parked, it will slew to a position called the "park position". By default, the park position is the one shown in Fig. 5.16, with the telescope pointing at the celestial pole. The default park position can be unpractical, because the telescope can be too high to reach. Up to three custom positions can be defined by the user. To define a parking position, move the telescope to the desired position

using the direction keys on the keypad, then select **MENU** – **Alignment** – **Park position** – **Set custom pos.** 1/2/3. When **ENTER** is pressed, the position of the telescope is stored in the mount memory.

To choose what to do when the mount is parked, select one of the following in MENU-Alignment-Park position:

- **Stops** only when parked, the mount stops in the current position
- **Default park** when parked, the mount slews to the position of Fig. 5.16.
- **Custom park 1/2/3** when parked, the mount slews to the custom position 1/2/3

The selected park position is marked with a star.

5.7 Switching off the Mount

The mount can be switched off in every moment, provided that no slew is underway (in this case, an abrupt stop can happen). It is not required that the mount is parked or put in a specific position.

To shut off the mount, operate on the power switch on the control box. The red power led will remain lighted for approximately 10 to 15 seconds; only when the led is off the power supply may be switched off.

6 The Menu System

The four main menus of the GM4000QCI mount are **Objects**, **Alignment**, **Drive** and **Settings**. The complete menu structure is detailed in chapter 13.

6.1 The Object Menu

The GM4000QCI mount contains an extensive database of celestial objects. When an object is selected, the display shows some data: the name of the object, its type (for example, **Glob.** for globular cluster or **PlanNb** for planetary nebula) and magnitude (if available). Pressing the key **2-INFO** will show the equatorial coordinates of the object, and pressing it again will show the altazimuth coordinates.

The system will use the following abbreviations for the object type:

Clust.	Open cluster	Cl+Neb	Open cluster with nebula
Glob.	Globular cluster	Quasar	Quasar
Galaxy	Galaxy	Unknow	Unknown type
Nebula	Diffuse or reflection nebula	Star	Star
DarkNb	Dark nebula	Planet	Planet
PlanNb	Planetary nebula	Satel.	Artificial satellite
Stars	Group of stars	Aster.	Asteroid
Astrsm	Asterism	Comet	Comet
Supern	Supernova remnant		

The database coordinates are referred to epoch J2000.0 and are corrected for precession, nutation and light aberration; the atmospheric refraction is also considered.

If *ENTER* is pressed a second time (when the display shows object information), the telescope will slew to the object, provided that it is above the horizon limits as defined in paragraph 6.4.6. When the slew procedure completes correctly, the keypad will emit a beep sound.

To abort a slew for any reason, press STOP.

6.1.1 Deepsky

The mount provides the following catalogues:

Menu	Designation	Objects
Messier	Messier	Complete, 110 objects
NGC	New General Catalogue	Complete, 7840 objects
IC	Index Catalogue	Complete, 5386 objects
PGC	Principal Galaxy Catalogue	Complete up to 16m, 64570 galaxies

Menu	Designation	Objects
UGC	Uppsala General Catalogue of galaxies	Complete, 12158 galaxies

To select an object from these catalogues, choose *MENU* – Objects – Deepsky – [catalogue name], enter the catalogue number and press *ENTER*.

Some catalogues can be accessed using the shortcut keys from outside the menu: 7-M for the Messier catalogue, 8-NGC for the NGC catalogue, 9-IC for the IC catalogue.

6.1.2 Star

The mount provides the catalogues in the following table (all are as complete as possible).

Menu	Designation	Remarks
Name	Proper name of the star	Use +/- and <i>ENTER</i> to choose from the list, in alphabetic order e.g.: Sirius
Bayer	Greek letter and constellation	Select the letter and the constellation using +/-, move between the two fields with the direction keys $E - W$. e.g.: alpha CMa (=Sirius)
Flamsteed	Number and constellation	Enter the number with the numeric keys, select the constellation using +/-; move between the two fields with the direction keys E - W. e.g.: 9 CMa (=Sirius)
BSC =HR	Bright Star Catalogue Harvard Revised	Enter the catalogue number e.g.: HR 2491 (=Sirius)
SAO	Smithsonian Astrophysical Observatory catalogue	Enter the catalogue number e.g.: SAO 151881 (=Sirius)
HIP	Hipparcos catalogue	Enter the catalogue number e.g.: HIP 32349 (=Sirius)
HD	Henry Draper catalogue	Enter the catalogue number e.g.: HD 48915 (=Sirius)
PPM	Position and Proper Motions catalogue	Enter the catalogue number e.g.: PPM 217626 (=Sirius)
ADS	Aitken's Double Star catalogue	Enter the catalogue number e.g.: ADS 5423 (=Sirius)
GCVS	General Catalogue of Variable Stars	See note

Note: the variable stars in the GCVS catalogue are identified by one or two letters and the name of the constellation, e.g. R Leo or UV Cet. The letters are assigned according to certain rules, which allow 334 identifiers in each constellation. When all these identifiers are assigned in a constellation, the star is identified with a letter V followed by a number starting from 335; thus V335 Ori is the 335th variable star found in Orion. When the GCVS catalogue is selected in the menu, you have to choose between **letter** and **number**. **letter** must be selected if the catalogue identifier is of the first kind (e.g.: R Leo); **number** must be selected if the catalogue identifier is of the second kind (e.g.: V335 Ori).

If you have chosen **letter**, select the letter(s) and the constellation using the +/- keys, move between the two fields with the direction keys E - W.

If you have chosen **number**, enter the number with the numeric keys, select the constellation using +/-; move between the two fields with the direction keys E - W.

The star menu can be accessed directly from outside the menu using the key *4-STAR*.

6.1.3 Planet

Choose the planet from the list using the \pm - keys and press *ENTER*, or press the corresponding numeric key: 0 - Sun, 1 - Mercury, 2 - Venus, 3 - Moon, 4 - Mars, 5 - Jupiter, 6 - Saturn, 7 - Uranus, 8 - Neptune, 9 - Pluto.

The planet menu can also be accessed from outside the menu using the key 5-PLANET.

6.1.4 Asteroid

After selection of the **Asteroid** menu you will have to wait a couple of seconds while the system calculates the list of asteroids. The list can be limited to objects brighter than a specified magnitude as described in paragraph 6.4.11.

The asteroid menu can be accessed from outside the menu using the key 6-MORE.

You can choose the desired asteroid from the list; however it is advisable to use the official asteroid number from the Minor Planet Center (e.g. "2" for Pallas). This number can be entered directly into the hand pad. You can find the official asteroid number using the web page at <u>http://ssd.jpl.nasa.gov/sbdb.cgi</u>.

See the documentation included with the updater program to learn how to update the asteroid table with the data you need.

6.1.5 Comet

The comet list contains several hundreds comets, beginning with 1P Halley, 2P Encke and so on. The list can be limited to objects brighter than a specified magnitude as described in paragraph 6.4.12.

The comet menu can be accessed from outside the menu using the key 6-MORE.

You can choose the desired comet from the list; however it is also possible to enter the number directly into the hand pad. You can find the complete designation of a comet using the web page at <u>http://ssd.jpl.nasa.gov/sbdb.cgi</u>.

The first entries have a number that can be entered directly into the hand pad; e.g. for "55P Tempel Tuttle" you will enter "55". With the other comets you will have to enter the year of discovery, then scroll with the keys up to the comet of interest: e.g. for "C/2001 Q4 NEAT" you will have to enter "2001" and scroll with the +/- keys.

See the documentation included with the updater program to learn how to update the comet table with the data you need.

6.1.6 Coordinates

Under this menu option you can enter the RA and Dec coordinates of the target object. This is used for objects not in the database (like a new comet).

This function can be accessed from outside the menu using the key *1-COORD*.

To enter the coordinates use the numeric keys; you can move between the fields using the direction keys E - W.

6.1.7 User Defined

Here you can define your own database. This submenu has the following functions:

Add user obj. - add a new object to the user database. You have to enter:

- the equatorial coordinates of the object, using the numeric keys; you can move between the fields using the direction keys E W. By default the display will show the coordinates to which the telescope is currently pointed to, so you can slew manually the telescope to the object to be inserted if you don't know its coordinates. Press *ENTER* to confirm.
- The object type and magnitude. Use the +/- keys to choose among the available types and enter the magnitude with the numeric keys; you can move between the fields using the direction keys E W. Press *ENTER* to confirm.
- A name for the object, using the direction keys N S to choose each letter and the direction keys E W to move between the letters. Press *ENTER* to confirm.

Select user obj. - slew the telescope to an object of the user database. The user database is shown in alphabetic order. Select the object to slew to by scrolling the list with the +/- keys and press *ENTER*.

Delete user obj. - delete an object from the user database. Select the object to be deleted by scrolling the list with the +/- keys and press *ENTER*. Press *ENTER* again to confirm the deletion.

This function can be accessed from outside the menu using the key 6-MORE.

6.1.8 Alt/Az Coords

Use this function to slew to a point of known altitude and azimuth. This is particularly useful for ground-based objects, like e.g. points in the landscape etc.

This function can be accessed from outside the menu using the key 6-MORE.

6.1.9 Meridian Flip

Usually the mount will point objects in the western part of the sky with the telescope to the east of the mount, and objects in the eastern part of the sky with the telescope to the west of the mount. It is not possible to follow an object through the meridian circle without turning around the telescope. In order to follow an object at the meridian, the GM4000QCI mount has an user-selectable tolerance that allows the telescope to go beyond the meridian by a certain amount (paragraph 6.4.6). In this way, objects lying near to the meridian can be observed with the telescope either to the east or to the west of the mount. The "meridian flip" function forces

the telescope to point at the same point of the sky from the other side. This function is available only when the telescope is aiming at a point near to the meridian; if you use it in another position, an error message will be shown.

6.2 The Alignment Menu

The alignment menu provides functions to help in the mount setup, to park and unpark the mount. They have been described in the previous chapter so here we will refer to that section.

6.2.1 Reset at Home

Reset at Home tells the mount controller that the mount is in the predefined home position (the one reached with the **Home Search** command). All alignment data are deleted, and from now on the controller will assume an ideal mount, until more complex procedures, such as 2-stars or 3-stars alignment, are performed. See paragraph 5.4.1 for details about using this function.

6.2.2 Polar Iterate

This function provides a method of aligning the polar axis using Polaris and a second star. See paragraph 5.5.5 for details about using this function.

6.2.3 2-Stars

This function allows you to calibrate the mount using two stars as reference objects. See paragraph 5.5.1 for details about using this function.

6.2.4 Refine 2-Stars

This function allows you to add more stars as reference points for calibrating the mount, it must be done after the **2-Stars** or **3-Stars** alignment functions. See paragraph 5.5.3 for details about using this function.

6.2.5 3-Stars

This function allows you to calibrate the mount using three stars as reference objects. See paragraph 5.5.2 for details about using this function.

6.2.6 Polar Align

This function allows you to align accurately the polar axis to the celestial pole using the calibration data and without using Polaris. It must be done after the **2-Stars** or **3-Stars** alignment functions. See paragraph 5.5.4 for details about using this function.

6.2.7 Ortho Align

This function allows you to correct the orthogonality error of the telescope using the calibration data. It must be done after the **2-Stars** alignment function followed by a **Refine 2-Stars** or after the **3-Stars** alignment function. See paragraph 5.5.6 for details about using this function.

6.2.8 Align Info

This function shows various data about the current alignment, including the polar axis alignment error and the orthogonality error if a 2-Stars or 3-Stars alignment has been done. See paragraph 5.5.8 for details about using this function.

6.2.9 Home Search

This function moves the mount to the home position and recovers the previously saved alignment data from the memory. It is also used to reset the mount alignment data together with **Reset at Home**. See paragraph 5.5.7 for details about using this function.

6.2.10 Home Save

This function moves the mount to the home position and saves the current alignment data to the memory. The alignment data can be later recovered with the **Home Search** function. See paragraph 5.5.7 for details about using this function.

6.2.11 Park/Unpark

Park is shown is the mount is operating normally, while **Unpark** will be show if the mount is in parked status. **Park** will slew to the park position and park the mount, disallowing all movements, **Unpark** will exit from the parked status and allow the mount to move. See paragraph 5.6 for details about using this function.

6.2.12 Park Position

A submenu appears where you can choose what to do when parking.

- **Stops only** when parked, the mount stops in the current position;
- **Default park** when parked, the mount slews to the position of Fig. 5.16;
- **Custom park 1/2/3** when parked, the mount slews to the custom position 1/2/3;
- Set custom pos. 1/2/3 saves the current position in memory as a custom park position.

Usage of this function is described in more detail in paragraph 5.6.

6.3 The Drive Menu

The drive menu provides functions controlling the tracking and slewing of the mount.

6.3.1 Tracking Speed

The following options are available:

- **Sidereal** selects the sidereal speed, i.e. the speed used to track the "fixed" stars.
- **Solar** selects a speed corresponding to the average speed of the Sun. It is slightly different from the sidereal speed.

- **Lunar** selects a speed corresponding to the average speed of the Moon. It is rather differed from the sidereal speed, and should be used when observing the Moon. Note that this command does not keep account of the declination motion of the Moon, that can be noticeable; to have a more precise tracking, see the follow object function (paragraph 6.4.13).
- **Custom** allows you to specify a custom deviation from sidereal speed. It must be entered as arcseconds per minute of time of drift in RA and Dec.
- **Stop** shuts down tracking, but allows moving the telescope. Useful to observe terrestrial objects.

6.3.2 Tracking Mode

This menu controls the periodic error correction (PEC).

The worm of the RA axis, even if it is made with the highest mechanical precision, introduces a small periodic error in the tracking motion. The period of this error corresponds to the time for a complete revolution of the worm. With the GM4000QCI this period is 3 minutes and 20.4 seconds. While for visual observation this error is completely negligible, astrophotography requires the maximum tracking accuracy to obtain excellent images, so it can be useful to have an automatic system to correct it in advance.

The GM4000QCI is able to reduce the tracking errors by storing in its memory the corrections required to track a star and replaying them at every turn of the worm gear.

The following options are available:

- No **PEC** the correction of the periodic error is switched off.
- **PEC** Active the correction of the periodic error is switched on. This option can be selected only if a valid PEC table is in memory following the training.
- **PEC Training** this function is used to make the GM4000QCI "learn" the corrections to make. Choose a star near the equator (to increase the sensitivity of the RA corrections) and the meridian (to minimise the effect of atmospheric refraction). Observe the star with a high magnification reticle eyepiece. The star will appear to "wobble" very slowly in RA as a result of the periodic error. This movement can be corrected with the E W direction keys of the hand pad or with the autoguider input. While guiding on the star as described, use this option to start the learning process of the mount. The recording of the corrections begins after about 15 seconds. For the next 3 minutes and a half, the star must be kept centred in the eyepiece (or in the autoguider) using the E W direction keys or the autoguider input. When the procedure is terminated you will hear a "beep" and the tracking mode will switch automatically to "PEC Active". The training procedure is interrupted if you move the mount at more than 15"/s, or if you begin a slew.

6.3.3 Swap E – W

When pressing the direction keys, the direction an object will move in the eyepiece depends on the optical configuration of the telescope. This function can swap the effect of the E and W keys on the hand pad to obtain a more comfortable control. Press enter to activate ("**ON**") or deactivate ("**OFF**") this function.

6.3.4 Swap N – S

When pressing the direction keys, the direction an object will move in the eyepiece depends on the optical configuration of the telescope. This function can swap the effect of the N and S keys on the hand pad to obtain a more comfortable control. Press enter to activate ("**ON**") or deactivate ("**OFF**") this function.

6.3.5 Auto Swap N – S

The action of the N and S keys is reversed with respect to the true North and South directions when the telescope changes from east to west of the meridian. This function can swap the effect of the N and S keys on the hand pad depending on the side of the meridian you are looking at. Press enter to activate ("ON") or deactivate ("OFF") this function.

6.3.6 Autoguide speed

Here you can choose the autoguide correction speed among the values 0.5x, 0.33x, 0.25x, 0.20x and 0.15x the sidereal speed. This setting affects only corrections made using the autoguider interface (described in paragraph 5.1.3).

6.4 Settings

The settings menu is used to setup the mount and customise its operation. Some of the functions of this menu have already been described in previous sections, so here we will refer to that sections if necessary.

6.4.1 Date and Time

Select this function to input the date and time. See paragraph 5.4.2 for details about using this function.

6.4.2 Local Timezone

Select this function to input the local time zone. See paragraph 5.4.2 for details about using this function.

6.4.3 DST (Daylight Saving Time)

Turn this option "**ON**" or "**OFF**" to activate or deactivate the daylight saving time correction. Select this function to input the date and time. See paragraph 5.4.2 for details about using this function.

6.4.4 Site

This submenu has the following functions:

- Current Show the current site information (name, coordinates, elevation and time zone). The text can be scrolled with the +/- keys. Press *ESC* to leave the information display.
- **Select** Select the observing site from a database of cities. See paragraph 5.4.2 for details about using this function.
- **Enter** Enter the coordinates of the observing site. See paragraph 5.4.2 for details about using this function.

- **Save** Save the current observing site to the user database. See paragraph 5.4.2 for details about using this function.
- **Delete** Delete an observing site from the user database. Select the site among the list and press *ENTER*, the press *ENTER* again to confirm deletion.

6.4.5 Get GPS Data

If the optional GPS module is connected to the control box, this function gets the exact coordinates of the observing site and the universal time (UTC). The time zone and the daylight saving time should be inserted manually if necessary (they are not necessary for locating objects correctly, but only to display the correct local time).

If the GPS module is already connected at boot and the corresponding boot option is active, the GPS data have already been collected during the boot process. Otherwise, the GPS module can be connected later and the data can be collected with this function. If the data have been acquired correctly, the display will show

GPS correctly acquired.

6.4.6 Drive Settings

This submenu contains the settings for the drive system.

- Slew Rate Set the maximum speed in degrees/second, from 02° /s to 05° /s
- **Tracking corr**. The tracking speed can be corrected up to +/-9.999%. A correction of 0.11% corresponds to a drift of 1 arcseconds per minute of time.
- Flip Slew Tol. Normally, the mount will point an object going to the "correct" side of the meridian; i.e. the telescope will be to the east of the mount when observing an object in the western sky and vice versa. This option allows you to "anticipate" an object that has not yet crossed the meridian, if the object is nearer than the specified value to the meridian. The user movements are blocked after they have gone through the meridian the "wrong way" more than this value. The value can vary from 1 to 15 degrees. Since this feature allows the telescope to go to the "wrong" side of the meridian, check that the value you enter here does not allow collisions between the instrumentation and the mount or the mount's support.
- Flip Guide Tol. This option allows you to track an object through the meridian for up to 15 degrees on the "wrong" side. The value can vary from 2 to 15 degrees, and must be greater than the Flip Slew Tol. value. Since this feature allows the telescope to go to the "wrong" side of the meridian, check that the value you enter here does not allow collisions between the instrumentation and the mount or the mount's support.
- Horizon Limit This is the minimum altitude angle the telescope will slew to. It is -1° by default and can be adjusted in the range -5° to $+90^{\circ}$.
- Conf. Flip If this option is active, the mount will show a warning message whenever pointing an object using the hand controller requires that the mount goes from one side of the pier to the other. It is possible then to choose among the options "Flip mount", "Don't flip" and "Cancel". "Flip mount" will point the object as usual, moving the mount to the other side of

the pier. "Don't flip" is available only if the object can be pointed without going to the other side of the pier; if you choose this option the mount will stay on the same side, even if the time for which the object can be tracked will be reduced. "Cancel" cancels the movement. This message does not appear for altazimuth targets.

- Conf. F. PC This option is the same of the previous option, applied to the movements made with the PC control. However, the warning message will appear on the hand controller display, so that using this option requires that you have access to the hand controller itself (or to the virtual keypad). Activating this option could create problems with some programs, since a movement can be suspended until the user reacts to the warning message.
- Track warn. If this option is active, the mount will show a warning message and emit a sound whenever the tracking time left for an object crossing the meridian goes below 30, 10, 5, 2 and 1 minutes. The warning sound is composed of a long beep followed by two fast beeps that repeat every six seconds for a minute. In the last minute of tracking, and in the first minute after the tracking stops, you will hear a long beep every six seconds.

6.4.7 Communication

This menu concerns the emulation mode of the RS-232 communication. The GM4000QCI mount can emulate the LX200 protocol or the (very similar) Astrophysics GTO protocol. Choose:

- **Emul**. **LX200** to emulate the LX200 protocol
- **Emul. AP** to emulate the Astrophysics protocol

The active protocol is marked with a star.

6.4.8 Network

The GM4000QCI can be operated by remote control over a 10/100Mbit/s Ethernet LAN with the TCP/IP protocol. See chapter 9 for details.

- **Show IP address** The current network parameters are shown. Scroll the text with the +/- keys, press *ESC* to leave the information display.
- Config Network The network configuration can be set to one of the following:
 - **Use DHCP** When this option is selected, the mount will ask a DHCP server on the network to provide an IP address.
 - Set IP address When this option is selected, the parameters can be entered manually; this is useful if your network does not have a DHCP server or if you are connecting the mount directly to a PC with a "crossed" cable. The following parameters should be entered:
 - IP address: e.g. 192.168.001.XXX (XXX=001 to 254, different from the IP address of the PC)
 - Network mask: e.g. 255.255.000.000
 - Gateway: e.g. 192.168.001.001

(the actual data may differ from these depending on the configuration of your network)

6.4.9 **Boot Settings**

This menu controls the settings to be applied every time the mount is switched on.

- **Display** - This controls what the display should show by default after switching on. Choose among:

RA/Dec Coord.	Show the equatorial coordinates
Alt/Az Coord.	Show the altazimuth coordinates
Lcl time clock	Show the current local time
UTC clock	Show the UTC time
Chrono	Show the stop clock (paragraph 7.2)
Timer	Show the timer (paragraph 7.1)

- The date and time are always displayed at first after boot, this settings becomes effective after the pressure of e.g. the direction keys. The key *3-DISP* can be used to switch between the display of the various information above, and additionally the Sidereal Time and Julian Date.
- GPS Sync When this option is ON, a GPS module is searched at boot to get the date, time and geographical coordinates. Press ENTER to turn this option "ON" or "OFF".
- Always Home When this option is ON, the mount will go to the home position and recover the alignment data saved in the last Home Save operation. Press *ENTER* to turn this option "ON" or "OFF". This function is useful only in exceptional cases.
- Alw. Unpark When this option is ON, the mount will begin normal operation even if it has been switched off in parked status. Press *ENTER* to turn this option "ON" or "OFF". This function is OFF by default.

6.4.10 Beep

When this option is **OFF**, the "beep" sound of the hand pad is never emitted. Press *ENTER* to turn this option "**ON**" or "**OFF**".

6.4.11 Asteroid Filter

The list of asteroids can be limited to objects brighter than the specified magnitude. Press *ENTER* to enter the menu; the following functions are available:

- **Filter** Control whether the filter is active or not. Press *ENTER* to turn this option "**ON**" or "**OFF**".
- **Limit magnitude** Pressing *ENTER* will show the current magnitude limit; enter a new magnitude limit with the numeric keys and press *ENTER*.

6.4.12 Comet Filter

The list of comets can be limited to objects brighter than the specified magnitude. Press *ENTER* to enter the menu; the following functions are available:

- Filter Control whether the filter is active or not. Press ENTER to turn this option "ON" or "OFF".
- Limit magnitude Pressing *ENTER* will show the current magnitude limit; enter a new magnitude limit with the numeric keys and press *ENTER*.

6.4.13 Follow Obj.

When this function is active, everytime you slew to a celestial object from the database, the apparent proper motion of the object is computed, and is set automatically as a "custom tracking rate" (paragraph 6.3.1). This is effective for all solar system objects, such as asteroids, comets, planets, the Sun and the Moon. Press *ENTER* to turn this option "ON" or "OFF".

6.4.14 Dome

This menu contains the settings for controlling a Baader Planetarium motorized dome, connected to the mount using the RS-232 or the GPS port with serial adapter. Press *ENTER* to enter the menu; the following functions are available:

- **Open Shutter** opens the dome.
- **Close Shutter** closes the dome.
- Home forces the dome to do a 360 degrees rotation, to force the detection of the homing sensor.
- Dome Control here you can choose between "No dome", "Dome on GPS" or "Dome on RS232" to set the port where the dome is connected. The mount will send the azimuth to the dome at fixed intervals. Select "Update interval" to change the interval; the default is 5 seconds. Use "Dome radius" to specify the dome radius (not diameter) in mm. The "Mount Type" option is used to specify if your GM4000's supporting shoulders stick out from the pillar from the front side (i.e. towards the declination axis) or from the back side. This is required to compute the position of the telescope.
- Mount position specify the mount position with respect to the dome.
 Xm, Ym and Zm are the offsets of the mount towards North, East and the Zenith, respectively, measured in mm from the centre of the spherical part of the dome to the centre of the base of the mount (see Fig. 6.1).
- Scope offset specify the position of the optical axis of the telescope relative to the declination mounting flange (see Fig. 6.2). X is the lateral displacement, measured from the centre of the mounting flange, positive towards right if looking from the back of the optical tube (usually X is zero). Y is the distance from the flange to the optical axis (usually it is the radius of the optical tube). All measures are in mm.

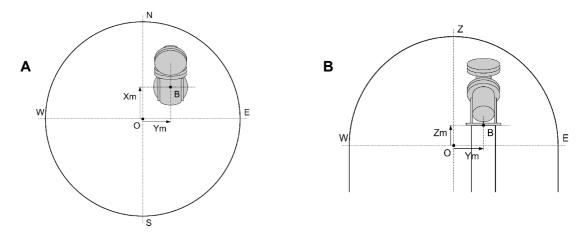


Fig. 6.1: Position of the mount inside the dome. Note that measurements are taken from the centre of the spherical part of the dome to the centre of the base of the mount. Usually Zm will be negative.

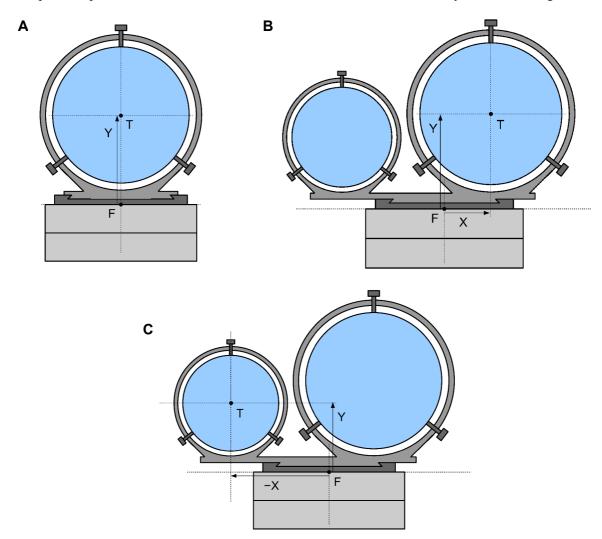


Fig. 6.2: Position of the optical tube assembly with respect to the declination flange, seen from the back of the optical tube. In **A** the usual case where the optical tube assembly is centered with respect to the declination axis; in this case X is zero. In **B** and **C**, a configuration with two optical tubes. To centre the dome shutter above one of the two instruments, specify X and Y as in the drawings. In **C**, X is negative, since the optical axis is to the left of the declination axis.

If the parameters for the dome control are not specified correctly, the dome will behave erratically or not move at all. Check that all the data are correct before suspecting communication problems.

6.4.15 Brightness

The brightness of the display can be adjusted at the following levels: Maximum – High – Medium – Low – Minimum. The current level is marked with a star.

6.4.16 Contrast

The contrast of the display can be adjusted at the following levels: Maximum – High – Medium – Low – Minimum. The current level is marked with a star.

Usually "Maximum" is the correct value, except when the ambient temperature is high.

6.4.17 Version

This function shows a text containing the firmware revision and date, and the version of the RA and Dec motors' firmware. Scroll the text with the +/- keys, press **ESC** to leave the information display.

6.4.18 Language

This function allows you to choose the language for the interface of the hand terminal QCI. The languages supported depend on the version of the hand controller attached to the mount.

7 Additional Functions

These utility functions are provided outside the menu, and can be accessed by pressing the key *3-DISP*.

7.1 Countdown Timer

This timer function is useful e.g. for astrophotography. Press the key **3-DISP** several times, until "**Countdown timer**" is shown on the display. A two-line display will appear:

00:00:00.0 Left 00:00:00.0 Tot

The numbers stands for hours, minutes, seconds and tenths of second.

Press ENTER to set the desired time interval. The display will change to

Set timer 00:00:00.0 Tot

where you can change the time using the numeric keys and the E - W direction keys to move between the fields. Press *ENTER* to start the countdown. The timer begins to run and when the count reaches zero several beeps will warn you that the timer is expired.

Press *ENTER* while the timer is running to stop the countdown.

7.2 Stop Watch

This stopwatch function is useful for measuring time intervals. Press the key **3-DISP** several times, until "**Chronometer**" is shown on the display. A single-line display will appear:

00:00:00.0

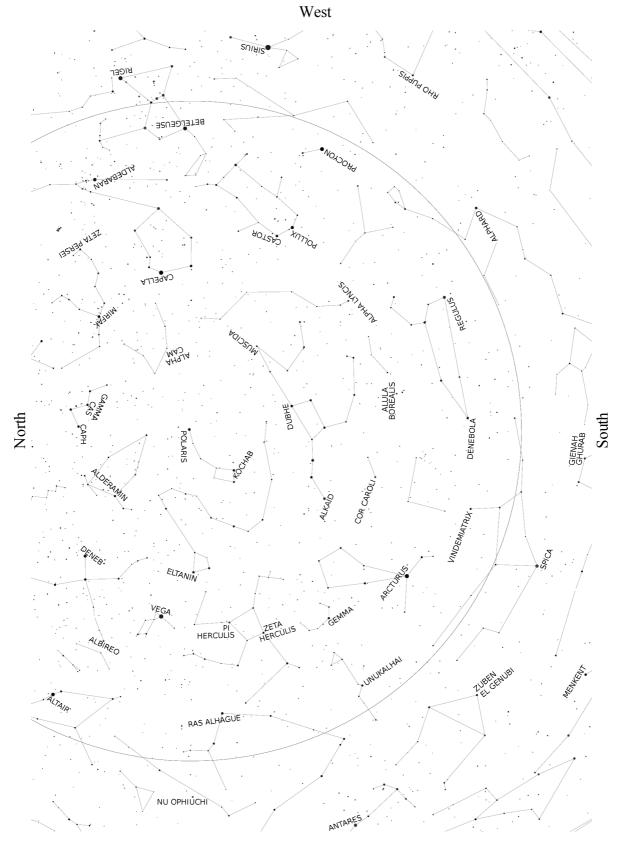
The numbers stands for hours, minutes, seconds and tenths of second. Press *ENTER* to start measuring the time interval. The timer begins to run and will continue until you press *ENTER* again to stop it. To zero the timer, press *ENTER* a third time.

8 Alignment Stars

This chapter provides a list of the stars used for the alignment of the mount. The mount knows the position of the alignment stars with extra accuracy, and corrects also their proper motions. Charts for locating the alignment stars in the sky are provided.

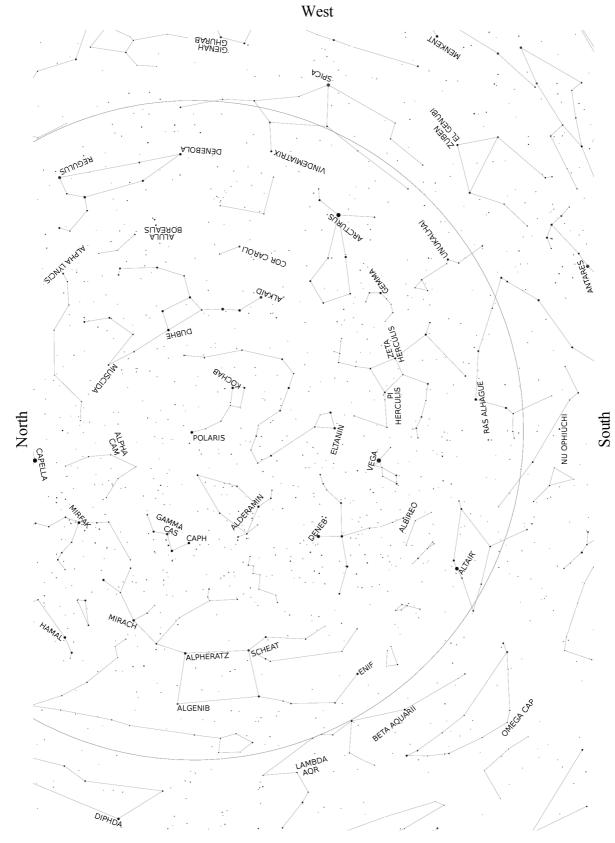
8.1 List of Reference Stars Sorted by Constellation

Constellation	Constellation	
Latin name	English name	Stars
Andromeda	Andromeda	Mirach – Alpheratz
Aquarius	Water Carrier	Beta Aqr – Lambda Aqr
Aquila	Eagle	Altair
Aries	Ram	Hamal
Auriga	Charioteer	Capella
Boote	Herdsman	Arcturus
Camelopardalis	Giraffe	Alpha Cam
Canes Venatici	Hunting Dogs	Cor Caroli
Canis Major	Greater Dog	Sirius
Canis Minor	Lesser Dog	Procyon
Capricornus	Goat	Omega Cap
Cassiopeia	Cassiopeia	Caph – Gamma Cas
Centaurus	Centaur	Menkent
Cepheus	Cepheus	Alderamin
Cetus	Whale	Diphda – Menkar
Corona Borealis	Northern Crown	Gemma
Corvus	Crow	Gienah Ghurab
Cygnus	Swan	Albireo – Deneb
Draco	Dragon	Eltanin
Eridanus	River	Zaurak
Fornax	Furnace	Alpha Fornacis
Gemini	Twins	Castor – Pollux
Hercules	Hercules	Zeta Herculis – Pi Herculis
Hydra	Water Serpent	Alphard
Leo	Lion	Denebola – Regulus
Libra	Balance	Zuben el Genubi
Lynx	Lynx	Alpha Lyncis
Lyra	Lyre	Vega
Ophiucus	Serpent Bearer	Ras Alhague – Nu Ophiuchi
Orion	Orion	Betelgeuse – Rigel
Pegasus	Pegasus	Algenib – Enif – Scheat
Perseus	Perseus	Mirfak – Zeta Persei
Puppis	Stern	Rho Puppis
Scorpius	Scorpion	Antares
Serpens	Serpent	Unukalhai
Taurus	Bull	Aldebaran
Ursa Major	Great Bear	Alkaid – Dubhe – Muscida – Alula Borealis
Ursa Minor	Little Bear	Kochab – Polaris
Virgo	Virgin	Spica – Vindemiatrix

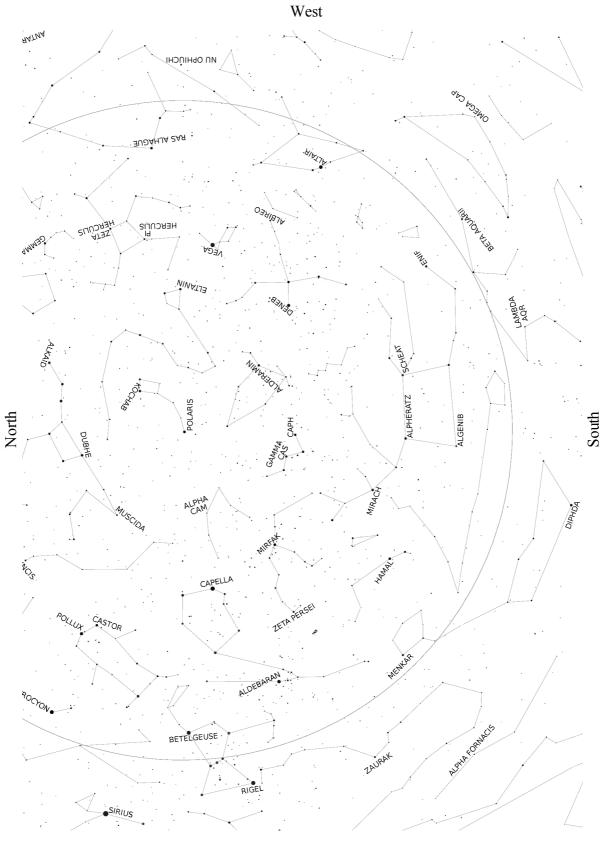

	Constellation	Constellation		Constellation	Constella
Star	Latin name	English name	Star	Latin name	English 1
Albireo	Cygnus	Swan	Hamal	Aries	Ram
Aldebaran	Taurus	Bull	Kochab	Ursa Minor	Little Bear
Alderamin	Cepheus	Cepheus	Lambda Aqr	Aquarius	Water Carr
Algenib	Pegasus	Pegasus	Menkar	Cetus	Whale
Alkaid	Ursa Major	Great Bear	Menkent	Centaurus	Centaur
Alpha Cam	Camelopardalis	Giraffe	Mirach	Andromeda	Andromeda
Alpha Fornacis	Fornax	Furnace	Mirfak	Perseus	Perseus
Alpha Lyncis	Lynx	Lynx	Muscida	Ursa Major	Great Bear
Alphard	Hydra	Water Serpent	Nu Ophiuchi	Ophiucus	Serpent Be
Alpheratz	Andromeda	Andromeda	Omega Cap	Capricornus	Goat
Altair	Aquila	Eagle	Pi Herculis	Hercules	Hercules
Alula Borealis	Ursa Major	Great Bear	Polaris	Ursa Minor	Little Bear
Antares	Scorpius	Scorpion	Pollux	Gemini	Twins
Arcturus	Boote	Herdsman	Procyon	Canis Minor	Lesser Dog
Beta Aqr	Aquarius	Water Carrier	Ras Alhague	Ophiucus	Serpent Bea
Betelgeuse	Orion	Orion	Regulus	Leo	Lion
Capella	Auriga	Charioteer	Rho Puppis	Puppis	Stern
Caph	Cassiopeia	Cassiopeia	Rigel	Orion	Orion
Castor	Gemini	Twins	Scheat	Pegasus	Pegasus
Cor Caroli	Canes Venatici	Hunting Dogs	Sirius	Canis Major	Greater Do
Deneb	Cygnus	Swan	Spica	Virgo	Virgin
Denebola	Leo	Lion	Unukalhai	Serpens	Serpent
Diphda	Cetus	Whale	Vega	Lyra	Lyre
Dubhe	Ursa Major	Great Bear	Vindemiatrix	Virgo	Virgin
Eltanin	Draco	Dragon	Zaurak	Eridanus	River
Enif	Pegasus	Pegasus	Zeta Herculis	Hercules	Hercules
Gamma Cas	Cassiopeia	Cassiopeia	Zeta Persei	Perseus	Perseus
Gemma	Corona Borealis	Northern Crown	Zuben el Genubi	Libra	Balance
Gienah Ghurab	Corvus	Crow			

8.2 List of Reference Stars Sorted by Name

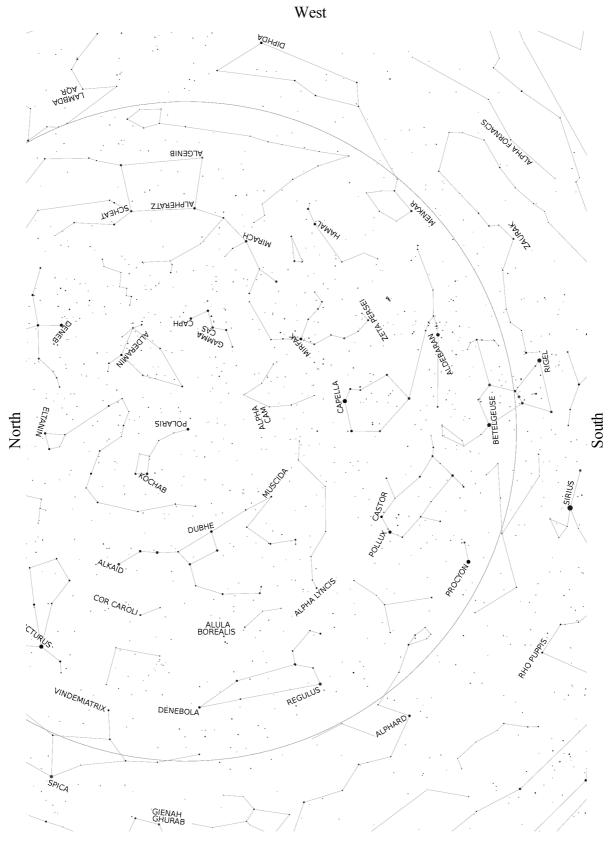
8.3 Alignment Star Charts


Use the charts in the following pages to locate the appropriate alignment stars. There are four charts for the northern hemisphere and four charts for the southern hemisphere, each corresponding to a different period of the year. Find the chart corresponding to your hemisphere and to the period of the year, then orient it with the cardinal points.

The stars shown for each period of the year are the ones visible in first part of the night; if you are working in different hours, you will have to use another chart. Also, near the equator you may have to use stars both from the northern and the southern hemisphere charts.

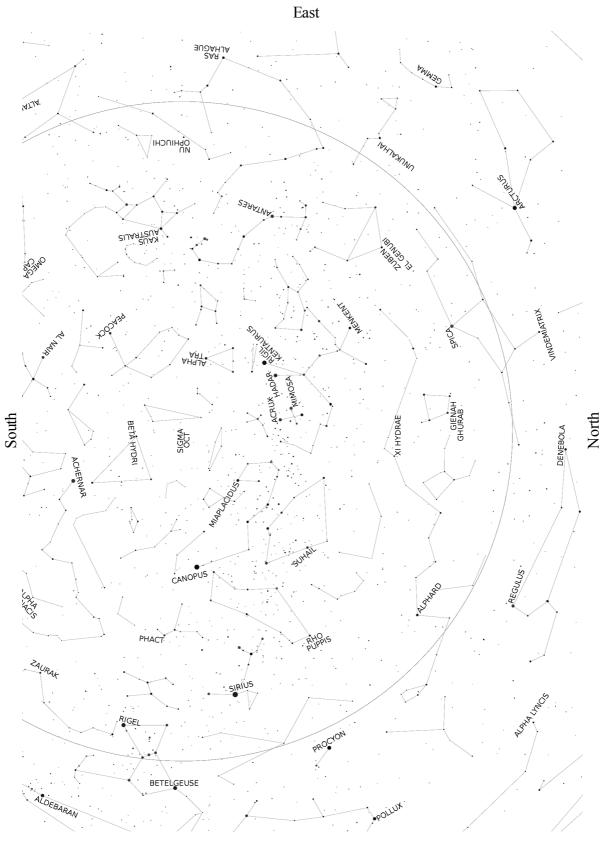

Northern Hemisphere Chart – March to May

fast

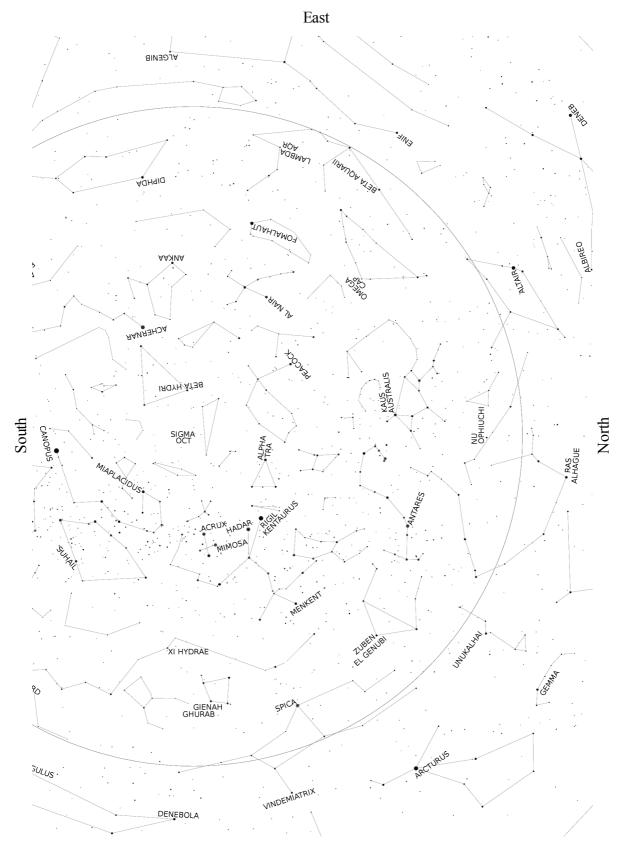

Northern Hemisphere Chart – June to August

fast

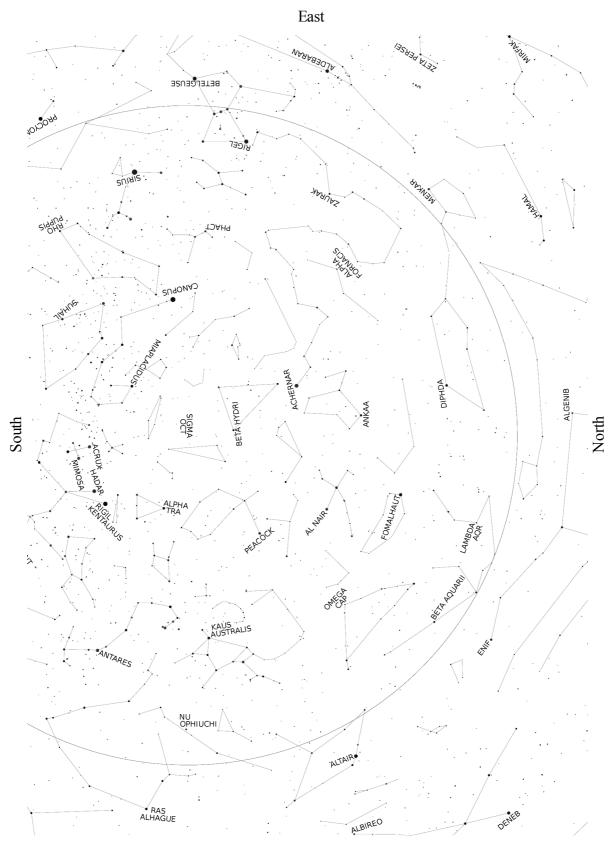
Northern Hemisphere Chart – September to November


fast

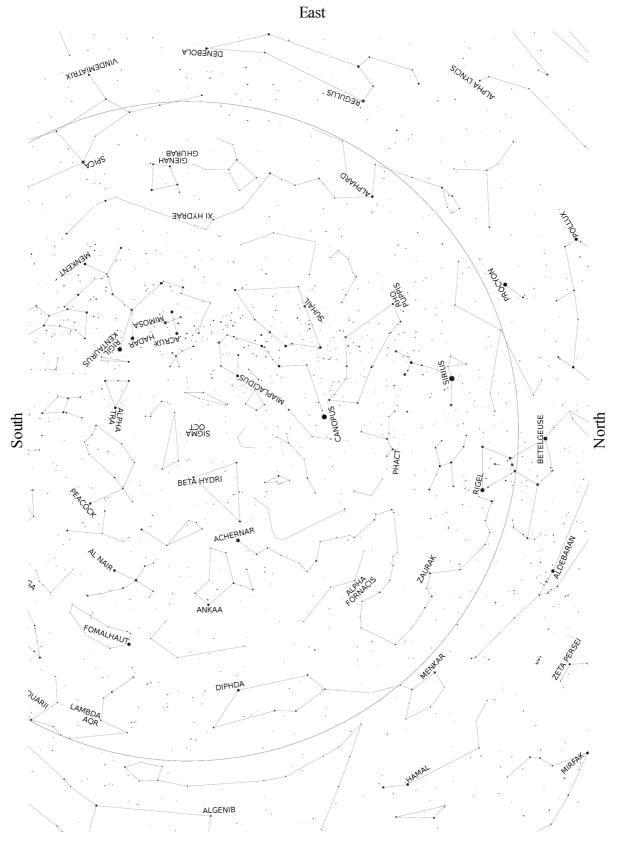
Northern Hemisphere Chart – December to February


fast

65


Southern Hemisphere Chart – March to May

tsəW


Southern Hemisphere Chart – June to August

tsəW

Southern Hemisphere Chart – September to November

tsəW

Southern Hemisphere Chart – December to February

tsəW

9 **Remote Control**

The GM4000QCI mount can be controlled from a remote PC in a number of ways. You can use the Virtual Keypad software, provided by 10micron, to emulate the functions of the hand pad, or control the mount with many popular software packages. This can be done through the RS-232 port or the LAN port.

Through these ports you can also upgrade the firmware of the mount.

WARNING

This system does not know if the telescope or some other instrument collides with the mount or other obstructions when moving. The software will slew to the correct side of the meridian (with an user-configurable tolerance), will perform some checks and will disallow aiming under the horizon (with an user-configurable tolerance) *when the calibration has been done correctly*.

You should pay attention when the telescope is moving in order to avoid problems to the telescope, its accessories and cables. Additional care should be used when the mount is operated remotely. In this case, a webcam or surveillance camera could be a good idea to check that everything is OK.

9.1 Configuration

The configuration to use depends on the selected port (RS-232 or LAN). You can also use the GPS port as a serial port, using the provided adapter; in this case the setup is the same as for the RS-232 port.

9.1.1 RS-232 Serial Connection

The serial interface of the PC is connected to the serial interface of the control box, using a pin-to-pin cable (see chapter 5.1.1). No additional configuration is required.

9.1.2 Ethernet – LAN

Various connections are possible. The mount can be inserted into an existing network, connecting the LAN socket of the control box with a switch/router using a CAT.5 pin-to-pin cable (Fig. 9.1).

Fig. 9.1: Connecting the mount to a network. Fig. 9.2: Connecting the mount directly to a PC.

Otherwise, the mount can be connected directly with a PC network socket, using a CAT.5 crossover cable (Fig. 9.2). A standard CAT.5 cable can be up to 100m long.

The mount network configuration should be set appropriately for your network. If a DHCP server is available, select **MENU** – **Settings** – **Network** – **Config Network** – **Use DHCP**. The mount will ask immediately for an IP address. Select **MENU** – **Settings** – **Network** – **Show IP address** and scroll the text with the +/- keys to verify the configuration; note the IP address of the mount (provided by the DHCP server).

Otherwise, you will have to choose an appropriate IP address based on your network configuration and enter it into the mount: to do this select MENU -Settings - Network - Set IP address.

If you connect the mount directly to a PC that is not connected to another network, and you are using Windows XP, you can configure the PC and the mount in the following way:

On the PC, click on Start, then select Connect To and Show All Connections. The Network Connections folder opens. Right-click on the Local Area Connection and select Properties. Make sure that the TCP/IP protocol is checked and double click on it. Select "Use the following IP address" and enter these data:

IP address: 192.168.0.1

Subnet mask: 255.255.255.0

Then click on OK in this window and in the Properties window, then close the Network Connections folder.

On the Mount, select *MENU* – Settings – Network – Config Network – Set IP Address and enter the following data:

IP address: 192.168.000.002

Network mask: 255.255.255.000

Gateway: 192.168.000.001

NOTICE

The settings above are only an example, that may work or not in your particular configuration.

9.2 Controlling the Mount with the Virtual Keypad

The Virtual Keypad software, included in the CD-ROM, simulates a hand pad device on a remote control PC.

To install the software, start the executable installer contained in the file gm_qci_virtkeypad1.0.zip on the CD-ROM.

9.2.1 Operation

On the PC desktop, click on the "Virtual Keypad" icon to start the software. The main window of the Virtual Keypad software (Fig. 9.3) replicates the hand pad.

Click on "Connection" and then on "Settings". A window appears where you can insert the connection parameters. Depending upon the desired connection mode, either select "Serial on RS-232 port" and choose the appropriate COM port (Fig. 9.4), or select "LAN (TCP/IP)" and enter the TCP/IP address of the mount (Fig. 9.5), available from the hand pad choosing *MENU* – **Settings** – **Network** – **Show IP address**. Confirm the configuration clicking on the "OK" button.

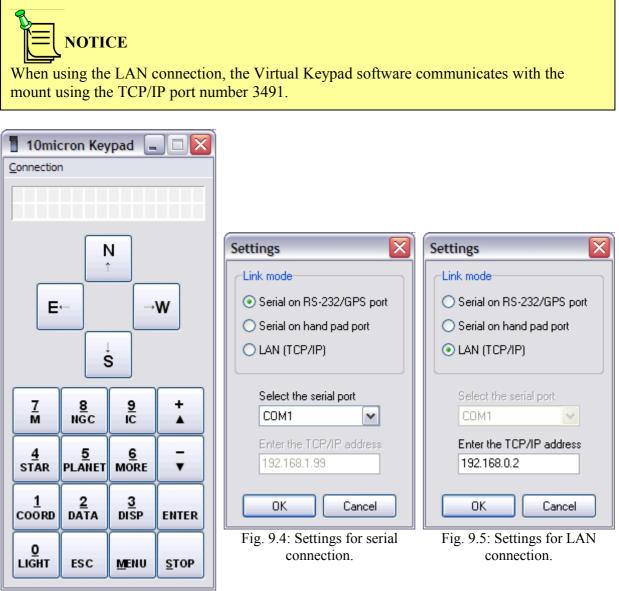


Fig. 9.3: Virtual Keypad software.

Now click on "Connection" and then on "Connect". The connection is established, and the display of the Virtual Keypad software will be updated to reflect the current display of the hand pad.

The hand pad and the Virtual Keypad operate in parallel, i.e. the display is the same on both devices and pressing a key on the Virtual Keypad has the same effect as pressing a key on the hand pad.

The keys of the Virtual Keypad can be pressed by clicking on them with the mouse, or by typing on the keyboard with the following correspondence:

Key on Virtual Keypad	Key on keyboard	Key on Virtual Keypad	Key on keyboard
N↑	cursor up	0 – LIGHT	0
E ←	cursor left	1 – COORD	1
$W \rightarrow$	cursor right	2 – DATA	2
S↓	cursor down	3 – DISP	3
ESC	Esc	4 – STAR	4
MENU	М	5 – PLANET	5
STOP	S	6 – MORE	6
ENTER	Enter	7 – M	7
+ 🔺	+ or Page Up	8 – NGC	8
- 🔻	– or Page Down	9 – IC	9

To interrupt the connection, click on "Connection" and then on "Disconnect". You can then remove the LAN cable or the serial cable.

9.3 Controlling the Mount with Other Software

The GM4000QCI mount can communicate with other software by emulating the LX200 or Astrophysics GTO protocols (see paragraph 6.4.7 for details about selecting the protocol), using the RS-232 port and the GPS port, and also on the TCP/IP port 3490.

If you want to use the Ethernet connection over port 3490 with a software supporting the LX200/Astrophysics protocol over a serial link, you can use a virtual serial port software such as HW Virtual Serial Port (<u>http://www.hw-group.com/products/hw_vsp/index_en.html</u>).

The following notes, regarding some software packages, are provided as a quick reference only; see the documentation included with your software for details about its telescope control functions.

9.3.1 Note for GUIDE 6.0 / 7.0 / 8.0

Read carefully the paragraph of the GUIDE manual that describes the control of an instrument through GUIDE.

Select "LX200 Meade" as the communication protocol and select the serial port where the mount has been connected. The serial transmission speed is 9600 bps.

9.3.2 Note for "The Sky"

Start "The Sky" and choose from the menu "Telescope→Setup". Choose "LX200 Meade" as telescope type (if you have selected the Astro-Physics emulation on the hand pad, you should choose "Astro-Physics GTO" as telescope type).

Now go to the Settings menu, insert the serial port where the mount has been connected at "COM Port" and set the baud rate to 9600. This is required only for the first connection.

Select "Telescope→Link" from the menu and click "Establish".

TheSky will show you the area where the telescope is just pointing at.

Now "The Sky" is able to control the mount.

If you get the error message "LX200 not responding..." please check if you used the correct serial port, if the port is set correctly, if the cable is connected at both ends and if the electronics is switched on.

Now if you click at an object on the screen an "Object information" window will appear. If you click on the small telescope icon the telescope will slew to this object.

If you want to fine centre this object you can click on "Telescope/Motion controls". Using the buttons in the small "Motion Control" window you can move the telescope in all directions.

If you decide to use the "T-Point" function of TheSky, we suggest that you don't make an alignment with 2 or more stars, because the mount calculations may interfere with the corrections made by "T-Point" resulting in bad pointing situations and errors.

9.3.3 Note for "Perseus"

Start "Perseus" and choose from the menu "Telescope control"; select "LX200 Meade" as telescope type (if you have selected the Astro-Physics emulation on the hand pad, you should change it back to LX200).

Choose the serial port where the mount has been connected.

Now the control window will appear and "Perseus" is able to control the mount.

9.3.4 Note for ASCOM compatible software (Maxim DL, ACP and others)

The GM4000QCI mount is compatible with software supporting the ASCOM specification (see the website http://ascom-standards.org). It should be controlled like an LX200 (Meade LX200, <u>not</u> generic) with no additional settings, or using the Astrophysics GTO drive with the Astrophysics protocol emulation.

Because of the rapid change of the software industry, the compatibility with the GM4000QCI mount changes continuously.

For information about the command set supported by the RS-232 link, please contact the assistance at <u>support@10micron.com</u> or the authorised reseller.

9.4 Upgrading the Firmware

The firmware of the GM4000QCI mount can be upgraded to a new version using the updater software, available from the 10micron website.

To download the updates, go to the URL <u>www.10micron.com/english/support.htm</u> and click "Forum".

You need to register to the forum to download the updates.

The updater software can also be used to update the comets and asteroids databases of the mount.

The instruction manual for the updater is available as a .PDF file after installing the software. Please refer to it for details.

10 Troubleshooting

The software of the GM4000QCI mount has been carefully tested by several experts. If you still find an error, please tell us. In that case, we need the following information from you:

- 1. The version number of the software, displayed under *MENU* **Settings Version**.
- 2. A complete list of all adjusted parameters.
- 3. A detailed description of how to reproduce the error. A problem can only be resolved if it is reproducible.

If you have a proposal for improving the GM4000QCI mount, please let us know, also by e-mail at <u>support@10micron.com</u>.

Problem	Cause	Action
The telescope can't slew accurately to an object.	The polar axis is not correctly aligned with the celestial pole.	Repeat the alignment procedure or use the 2-stars calibration.
	The wrong object has been selected.	Select the correct object.
	The telescope has been calibrated on the wrong stars.	Repeat the calibration procedure.
	Some parameters (date, time, location, time zone, DST) are not correctly set.	Enter the correct parameters.
	The telescope has a large orthogonality error and the mount has been calibrated only with 2 stars or less.	Repeat the calibration using three or more stars.
The motors halt and the "MOTOR ERROR – CHECK POWER"	The power supply is inadequate.	Check that the power supply is able to provide the required current (5A) at 24V DC.
message appears.	The mount has hit the mechanical stops.	Repeat the calibration procedure.
The telescope hits an obstacle or the base of	The calibration is incorrect.	Repeat the calibration procedure.
the mount.	The Flip Slew Tolerance and Flip Guide Tolerance parameters are set to a value that is too large.	Set the Flip Slew Tolerance and Flip Guide Tolerance to a smaller value.

A table of commonly encountered problems (and proposed solutions) follows.

Problem	Cause	Action
	The power supply has been removed before the completion of the shutdown.	When switching off the mount, wait until the red led turns off before removing the power supply.

11 Maintenance

Under normal operating conditions, minimal maintenance is required.

Every 12 months clean the external surfaces from dust and, if you want, lightly grease all surfaces with a soft cloth to protect the surface colour treatment of the mount. We recommend using Vaseline oil.

Remove humidity.

The internal parts are greased for the entire life of the mount and, under normal operating conditions, no other maintenance is required. After 10 years you can think to do a total maintenance of all internal gearing, but we suggest to do it with an expert or if you prefer by our maintenance department.

No checks or periodical corrections are needed.

12 Technical Support Centre

If any problem occurs, please don't hesitate to contact the reseller or dealer in your country or directly our technical support department, also on our web site at:

www.10micron.com/english/support.htm

Don't hesitate to contact us for assistance:

10 MICRON by

COMEC company - via Archimede 719

21042 Caronno Pertusella (VA) ITALY

For foreign countries:

For any technical or maintenance problem or problems regarding spare parts, please contact the manufacturer or authorized dealer in the country of import, who will tell you what steps to take or will refer you to qualified maintenance centres.

The company cannot be held responsible for any damage caused by operations effected by staff who have not first contacted the Technical Assistance Centres or who have not been authorized by the manufacturer's assistants.

The warranty and CE conformity declaration are included in the mount package.

13 Menu Structure

Use this reference table to find the relevant information for each command in the menu of the hand pad.

The main menu is composed of four items: Objects – Alignment – Drive – Settings.

13.1 Objects

Menu	Submenu	Notes	Paragraph
Deepsky	Messier	Messier catalogue	6.1.1
	NGC	New General Catalogue	6.1.1
	IC	Index Catalogue	6.1.1
	PGC	Principal Galaxy Catalogue	6.1.1
	UGC	Uppsala General Catalogue of galaxies	6.1.1

Star	Name	Proper name	6.1.2
	Bayer	Bayer letter and constellation	6.1.2
	Flamsteed	Flamsteed number and constellation	6.1.2
	BSC	Bright Star Catalogue (also HR, Harvard Revised)	6.1.2
	SAO	Smithsonian Astrophysical Observatory	6.1.2
	HIP	Hipparcos Catalogue	6.1.2
	HD	Henry Draper catalogue	6.1.2
	РРМ	Position and Proper Motions catalogue	6.1.2
	ADS	Aitken Double Star catalogue	6.1.2
	GCVS – letter – number	General Catalogue of Variable Stars	6.1.2

Planet	0 Sun	6.1.3
	1 Mercury	6.1.3
	2 Venus	6.1.3
	3 Moon	6.1.3
	4 Mars	6.1.3
	5 Jupiter	6.1.3
	6 Saturn	6.1.3
	7 Uranus	6.1.3

8 N	eptune	6.1	.3
9 P1	uto	6.1	.3

Asteroid	1 Ceres 2 Pallas	Select from the list or enter the official number.	6.1.4

Comet	1P Halley 2P Encke	Select from the list or enter the official number.	6.1.5

slew to	Coordinates	Ente		ation coordinates to	6.1.6
---------	-------------	------	--	----------------------	-------

User defined	Select user obj.	Select an object from the user database	6.1.7
	Add user obj.	Add an object to the user database	6.1.7
	Delete user obj.	Delete an object from the user database	6.1.7

Alt/Az Coords.	Enter altazimuth coordinates to slew to	6.1.8

Meridian Flip	When in the proximity of the meridian,	6.1.9
	moves the telescope to the other side of the	
	mount, pointing at the same point in the sky	

13.2 Alignment

Park/Unpark	Park or unpark the mount	5.6
-------------	--------------------------	-----

Park position	Stops only	Parking stops the mount in the current position	6.2.12
	Default park	Parking slews the mount to the default park position	6.2.12
	Custom park 1	Parking slews the mount to the custom park position 1	6.2.12
	Custom park 2	Parking slews the mount to the custom park position 2	6.2.12
	Custom park 3	Parking slews the mount to the custom park position 3	6.2.12
	Set custom pos1	Set the current position as the custom park position 1	6.2.12

1	Set the current position as the custom park position 2	6.2.12
1	Set the current position as the custom park position 3	6.2.12

Polar Iterate	Align	the	polar	axis	using	Polaris	and	5.5.5
	anothe	r stai	r					

2-Stars	Calibrate	the	mount	using	two	stars	as	5.5.1
	reference of	obje	cts					

Refine 2-Stars	Add	a	star	as	reference	object	for	5.5.3
	calibr	atin	g the	mou	nt			

3-Stars	Calibrate the mount using three stars as 5.5.2
	reference objects

Polar Align	Align the polar axis using the calibration	5.5.4
	data and without Polaris	

Ortho Align	Correct the orthogonality error of the telescope	e 5.5.6
-------------	--	---------

Align InfoShow various data on the current alignment5.5.8	Align Info		Show various data on the current alignment	5.5.8
---	------------	--	--	-------

Home Search	Slew the mount to the home position and	5.5.7
	recover the previously saved alignment data	
	from the memory	

Home Save	Slew the mount to the home position and 5.5.7 save the current alignment data to the	
	memory.	

Reset at HomeInitialize the mount at the home position5.4.1

13.3 Drive

Tracking Speed	Sidereal	Sidereal tracking speed	6.3.1
	Solar	Solar tracking speed	6.3.1
	Lunar	Lunar tracking speed	6.3.1

Custom	Custom tracking speed, entered by	the user 6.3.1
Stop	Tracking stopped	6.3.1

Tracking Mode	No PEC	Periodic error correction switched off	6.3.2
	PEC Active	Periodic error correction active	6.3.2
	PEC Training	Training of the periodic error correction function	6.3.2

Swap E-W	Exchange the action of the E – W direction	6.3.3
	keys	

Swap N-S	Exchange the action of the N – S direction	6.3.4
	keys	

	tically the action of the N keys, depending on the	
--	--	--

Autoguide speed	Sets the autoguide correction speed.	6.3.6
--------------------	--------------------------------------	-------

13.4 Settings

Date and Time	Enter the date and time	5.4.2
Local Timezone	Set the local time zone (positive east of	5.4.2

		Greenwich)	
-			

	DST	Daylight Saving Time corre	ction 5.4.2
--	-----	----------------------------	-------------

Site	Current	Show the current observation site data	6.4.4
	Select	Select the observation site from the database	5.4.2
	Enter	Enter the coordinates of the observation site	5.4.2
	Save	Save the current observation site in the user database	5.4.2
	Delete	Delete an observation site from the user database	6.4.4

Get GPS Data	Get date, time and geographical coordinates	6.4.5
	from the optional GPS module	

Drive Settings	Slew Rate	Set the maximum slew speed, between $2^{\circ}/s$ and $5^{\circ}/s$	6.4.6
	Tracking corr.	Set a correction to the tracking speed	6.4.6
	Flip Slew Tol.	Define the angular limit to which the telescope will slew going beyond the meridian from the "wrong" side of the mount (max. 15°, default 10°)	6.4.6
	Flip Guide Tol.	Define the angular limit to which the telescope will track objects beyond the meridian (max. 15°, default 15°)	6.4.6
	Horizon Limit	Set the minimum elevation for slews, from -5° to $+90^{\circ}$ (default -1°)	6.4.6
	Conf. Flip	If this option is active, confirm slews commanded from the hand pad when the mount has to change side of the pier.	6.4.6
	Conf. F. PC	If this option is active, confirm slews commanded from the PC when the mount has to change side of the pier.	6.4.6
	Track warn.	If this option is active, beeps when the tracking time left is expiring.	6.4.6

Communication	Emul. LX200	Emulate the LX200 protocol	6.4.7
	Emul. AP	Emulate the Astrophysics protocol	6.4.7

Network	Show IP address	how IP address Show the current network conf		6.4.8
	Config Network	Enter the networ	k configuration	6.4.8
		Use DHCP	Use a DHCP server	6.4.8
			Set manually the IP address, network mask and gateway	6.4.8

Boot Settings	Display	Select what to display after switching on	6.4.9
		the mount	

	RA/Dec Coord.	Equatorial coordinates	6.4.9
	Alt/Az Coord.	Altazimuth coordinates	6.4.9
	Lel Time Clock	Local time	6.4.9
	UTC Clock	Universal Time	6.4.9
	Chrono	Stopwatch	6.4.9
	Timer	Countdown timer	6.4.9
GPS Sync.	Search the optio mount is switche	nal GPS module when the d on	6.4.9
Alw. Home		e position and retrieve the data when the mount is	6.4.9
Alw. Unpark	-	nt when it is switched on, een switched off in parked	6.4.9

Веер	Activate or deactivate the sound from the hand pad	6.4.10
------	--	--------

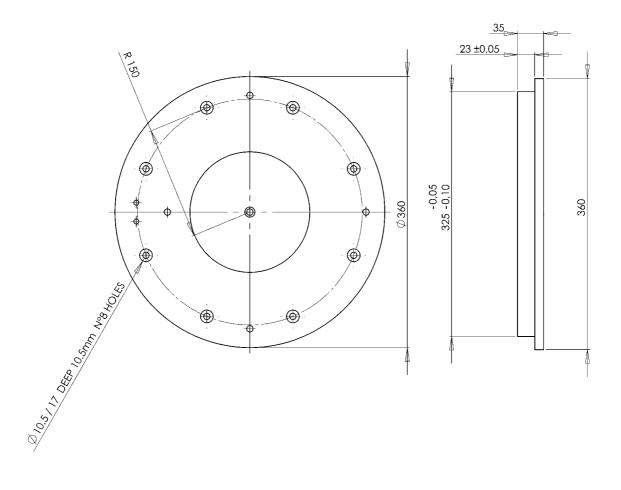
Asteroid Filter	Filter	Activate or deactivate the asteroid brightness filter	6.4.11
	Limit magnitude	Set the magnitude limit for the asteroid filter	6.4.11

Comet Filter	Filter	Activate or deactivate the comet brightness filter	6.4.12
	Limit magnitude	Set the magnitude limit for the comet filter	6.4.12

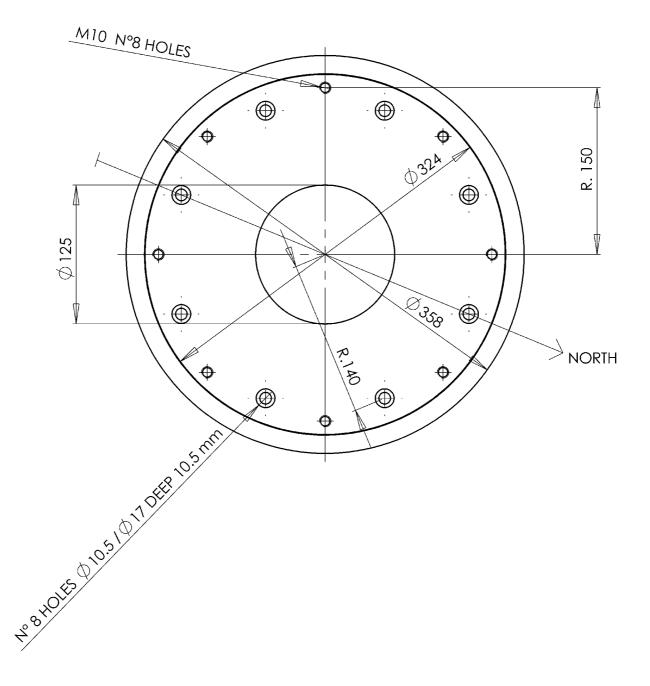
Follow Obj.	Set to ON to compute and set automatically the tracking rate after each slew to a solar	
	system object	

Dome	Open Shutter	Open the dome shutter	6.4.14
	Close Shutter	Close the dome shutter	6.4.14
	Home	Force homing of the dome	6.4.14
	Dome Control	Dome control parameters	6.4.14
	Mount Position	Mount position parameters	6.4.14
	Scope Offset	Scope position parameters	6.4.14

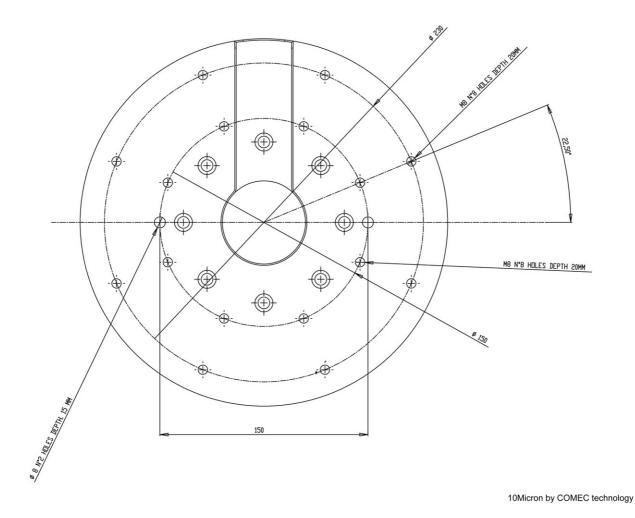
Brightness	Set	the	brightness	of	the	display	6.4.15
------------	-----	-----	------------	----	-----	---------	--------


	(Maximum, Minimum)	High,	Medium,	Low	or		
--	-----------------------	-------	---------	-----	----	--	--

High, Medium, Low or Minimum)	Contrast		Set the contrast of the display (Maximum, High, Medium, Low or Minimum)	6.4.16
-------------------------------	----------	--	--	--------


Version	Show the version and date of the firmware,	6.4.17
	and the version of the motors' firmware	

Language	Change the language used on the keypad	6.4.18
----------	--	--------


Appendix A Base Adapter

Appendix B Pier Adapter (optional)

Appendix C Telescope Flange

89

NOTES

NOTES

NOTES